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Interior methods for optimization were widely used in the 1960s, primarily
in the form of barrier methods. However, they were not seriously applied to
linear programming because of the dominance of the simplex method. Barrier
methods fell from favour during the 1970s for a variety of reasons, including
their apparent inefficiency compared with the best available alternatives. In
1984, Karmarkar’s announcement of a fast polynomial-time interior method
for linear programming caused tremendous excitement in the field of optimiza-
tion. A formal connection can be shown between his method and classical
barrier methods, which have consequently undergone a renaissance in interest
and popularity. Most papers published since 1984 have concentrated on is-
sues of computational complexity in interior methods for linear programming.
During the same period, implementations of interior methods have displayed
great efficiency in solving many large linear programs of ever-increasing size.
Interior methods have also been applied with notable success to nonlinear
and combinatorial problems. This paper presents a self-contained survey of
major themes in both classical material and recent developments related to
the theory and practice of interior methods.
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1. Introduction to interior methods
1.1. The way we were

Before 1984, the question ‘How should I solve a linear program?’ would have
been answered almost without exception by ‘Use the simplex method’. In
fact, it would have been extremely difficult to find serious discussion of any
method for linear programming (LP) other than the famous simplex method
developed by George B. Dantzig in 1947.

As most readers already know, the simplex method is an iterative proce-
dure derived from a fundamental property of essentially all linear programs:
an optimal solution lies at a vertex of the feasible region. Beginning with
a vertex, the simplex method moves between adjacent vertices, decreasing
the objective as it goes, until an optimal vertex is found.

Although nonsimplex strategies for LP were suggested and tried from time
to time, such techniques had never approached the simplex method in overall
speed and reliability. Hence the simplex method retained unquestioned pre-
eminence as the linear programming method of choice for nearly 40 years.
(We describe later the persistent unhappiness with the simplex method on
grounds of its theoretical complexity.)

Such an exclusive focus on the simplex method had several effects on the
field of optimization. Largely for historical reasons, the simplex method
is surrounded by a bevy of highly specialized terminology (‘basic feasible
solution’) and pedagogical constructs (the tableau) with little apparent con-
nection to other continuous optimization problems. Many researchers and
practitioners consequently viewed linear programming as philosophically dis-
tinct from nonlinear programming. This conceptual gap reinforced a ten-
dency to develop ‘new’ linear programming methods only as variations on
the simplex method.

In marked contrast, the field of nonlinear optimization was characterized
not only by the constant development of new methods with differing flavours,
but also by a shift over time in the preferred solution techniques. Since the
late 1970s, for example, nonlinearly constrained optimization problems have
been solved with sequential quadratic programming (SQP) methods, which
involve a sequence of constrained subproblems based on the Lagrangian func-
tion. In the 1960s, however, constrained problems were most often converted
to unconstrained subproblems. Penalty and barrier methods were especially
popular, both motivated by minimizing a composite function that reflects
the original objective function as well as the influence of the constraints.
Classical barrier methods, intended for inequality constraints, include a com-
posite function containing an impassable positive singularity (‘barrier’) at
the boundary of the feasible region, and thereby maintain strict feasibility
while approaching the solution.

Although barrier methods were widely used and thoroughly analysed dur-
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ing the 1960s (see Section 3 for details and references), they nonetheless
suffered a severe decline in popularity in the 1970s for various reasons, in-
cluding inherent ill-conditioning as well as perceived inefficiency compared
to alternative strategies. By the late 1970s, barrier methods were considered
for the most part an interesting but passé solution technique.

As we shall see, the situation today (1991) in both linear and nonlinear
programming has altered dramatically since 1984, primarily as a result of
dissatisfaction with the theoretical computational complexity of the simplex
method.

1.2. Concerns about the simplex method

On ‘real-world’ problems, the simplex method is invariably extremely effi-
cient, and consistently requires a number of iterations that is a small multi-
ple (2-3) of the problem dimension. Since the number of vertices associated
with any LP is finite, the simplex method is also guaranteed under quite
mild conditions to converge to the optimal solution. The number of ver-
tices, however, can be exponentially large. The well known ‘twisted cube’
example of Klee and Minty (1972) is a linear program with n variables and
2n inequality constraints for which the simplex method with the standard
pivot-selection rule visits each of the 2™ vertices. The worst-case complex-
ity of the simplex method (the number of arithmetic operations required
to solve a general LP) is consequently ezponential in the problem dimen-
sion. The gigantic gap between the observed and worst-case performance of
the simplex method is still puzzling; the issue of whether an (undiscovered)
simplex pivot rule could improve its complexity is also unresolved.

As the formal study of computational complexity increased in importance
during the 1960s and 1970s, it became a strongly held article of faith among
computer scientists that a ‘fast’ algorithm must be polynomial-time, mean-
ing that the number of operations required to solve the problem should be
bounded above by a polynomial in the problem size. The simplex method
clearly does not satisfy this property. Although practitioners routinely and
happily solved large linear programs with the simplex method, the existence
of a provably polynomial algorithm remained a major open question.

In 1979, to the accompaniment of worldwide publicity, Leonid Khachian
published the first polynomial algorithm for LP. The ellipsoid method of
Khachian is based on earlier techniques for nonlinear programming devel-
oped by other mathematicians, notably Shor, Yudin and Nemirovsky. An
interesting feature of Khachian’s approach is that it does not rely on com-
binatorial features of the LP problem. Rather, it constructs a sequence of
ellipsoids such that each successive ellipsoid both encloses the optimal so-
lution and undergoes a strict reduction in volume. The ellipsoid method
generates improving iterates in the sense that the region of uncertainty sur-
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rounding the solution is monotonically ‘squeezed’. (Simplex iterates are
also improving in the sense that the objective value is decreasing, but they
provide no information about the closeness of the current iterate to the
solution.)

The crucial elements in polynomiality of the ellipsoid method are what
might be termed outer and inner bounds for the solution. The outer bound
guarantees an initial enclosing ellipsoid, and the inner bound specifies the
size of the final ellipsoid needed to ensure sufficient closeness to the exact
solution. Similar features also figure prominently in the complexity analysis
of interior methods, and are discussed in Section 6.

Despite its polynomial complexity, the ellipsoid method’s performance was
extremely disappointing. In practice, the number of iterations tended to be
almost as large as the worst-case upper bound, which, although polynomial,
is very large. The simplex method accordingly retained its position as the
clear winner in any comparison of actual solution times. Creation of the
ellipsoid method led to an unexpected anomaly in which an algorithm with
the desirable theoretical property of polynomiality compared unfavourably
in speed to an algorithm with worst-case exponential complexity. The quest
therefore continued for an LP algorithm that was not only polynomial, but
also efficient in practice.

This search ended in 1984, when Narendra Karmarkar presented a novel
interior method of polynomial complexity for which he reported solution
times 50 times faster than the simplex method. Once again, international
coverage in the popular press surrounded the event, which has had remark-
able and lasting scientific consequences.

Karmarkar’s announcement led to an explosion of interest among re-
searchers and practitioners, with substantial progress in several directions.
Interior methods are indeed ‘fast’; extensive numerical trials have shown
conclusively that a variety of interior methods can solve many very large lin-
ear programs substantially faster than the simplex method. After a formal
relationship was shown between Karmarkar’s method and classical barrier
methods (Gill et al., 1986), much research has concentrated on the common
theoretical foundations of linear and nonlinear programming.

Unlike the simplex method, interior techniques can obviously be applied to
nonlinear optimization problems. (In fact, they were devised more than 30
years ago for this purpose!) Interior methods have already been developed
for quadratic and nonlinear programming, and extensions of the interior
approach to difficult combinatorial problems have also been proposed; see
Karmarkar (1990).

A fundamental theme permeating the motivation for interior methods is
the creation of continuously parametrized families of approximate solutions
that asymptotically converge to the exact solution. As the parameter ap-
proaches its limit, the paths to the solution trace smooth trajectories whose
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geometric properties can be analysed. Each iteration of a ‘path-following’
method constructs a step intended to follow one of these trajectories, moving
both ‘toward’ and ‘along’ the path. In the first heyday of barrier methods,
these ideas led to great interest in extrapolation. Today, they are being gen-
eralized and extended to new problem areas; for a discussion of such ideas in
linear programming, see Megiddo (1987), Bayer and Lagarias (1989, 1991),
and Karmarkar (1990). The field of interior methods seems to offer the
continuing promise of original theory and efficient methods.

1.8. Overview

This article covers only a small part of the large and rapidly expanding
number of topics related to interior methods. Although the term ‘interior
methods’ is not precisely defined, several themes perceived as disparate be-
fore 1984 can now be placed in a unified framework. For reasons of space, we
motivate interior methods only through a ‘classical’ barrier function. Kar-
markar’s original 1984 algorithm was based on nonlinear projection, a per-
spective that provides interesting geometric insights. See Gonzaga (1992),
Nesterov and Nemirovsky (1989), and Powell (1990) for further interpreta-
tions.

Work in interior methods today is a melange of rediscovered as well as
new methods, complexity analysis, and sparse linear algebra. The approach
taken in this article is to present some initial background on optimization
(Section 2), followed by a detailed treatment of the theory of classical barrier
methods (Section 3). After reviewing Newton’s method (Section 4), we turn
in Section 5 to the special case of linear programming, and describe the struc-
ture of several interior methods. A particular interior LP method and its
complexity analysis are given in detail (Section 6) to give the flavour of such
proofs. The practical success of interior methods is dependent on efficient
linear algebra; the relevant techniques for linear and nonlinear problems are
described in Section 7. Finally, we close by mentioning selected directions
for future research.

2. Background in optimization
2.1. Definitions and notation

Optimization problems, broadly speaking, involve finding the ‘best’ value of
some function. A continuous optimization problem has three ingredients: a
set of variables, usually denoted by the real n-vector z; an objective function
f(z) to be optimized (minimized or maximized); and constraints (equality
and/or inequality) that restrict acceptable values of the variables.

Except for the linear programming case, our main interest is in inequality
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constraints. We consider a generic optimization problem of the form

mineigknize f(z) subject to c¢i(z)>0, i=1,...,m. (2.1)
x ™

It is assumed throughout that all functions of interest are smooth. This
assumption is stronger than necessary, and is imposed mainly to simplify
the discussion.

The set of points satisfying the constraints of (2.1) is denoted by

F={z|c(z)20,i=1,...,m}, (2.2)

and is called the feasible region. If z is in F, z is said to be feasible.

A linear programming problem is an optimization problem in which the
objective function and all the constraint functions, both equalities and in-
equalities, are linear. An optimization problem is called a nonlinear program
if the objective or any constraint function is nonlinear. A gquadratic program
has a quadratic objective and linear constraints.

Several definitions involving sets will be important in our discussion. All
sets are in R™ unless stated otherwise.

Definition 1 (Interior of a set.) Given a set S, a point z is an interior
point of S if £ € § and there exists a neighbourhood of z that is entirely
contained in S. The interior of S, denoted by int(S), is the collection of all
interior points of S.

Definition 2 (Boundary of a set.) Given a set S, a point z is a boundary
point of S if every neighbourhood of = contains at least one point in S and at
least one point not in S. The boundary of S is the collection of all boundary
points of S.

It is straightforward to show that a closed set contains all its boundary
points.

For the feasible region F (2.2) associated with our generic optimization
problem, the subset of points in F for which all the constraint functions are
strictly positive is denoted by strict(F) and defined as

strict(F) = {z | ci(z) >0, i=1,...,m}. (2.3)

A point z in strict(F) is said to be strictly feasible.

Although the sets strict(F) and int(F) are identical in many instances,
they can be different. For example, consider the single constraint 22 +22 > 0
in R2. The corresponding feasible region F includes all of R?; consequently,
every point in R? is an interior point, and int(F) = R2. In contrast, the set
strict(F) includes all points in R? ezcept the origin.

The idea of a level set will be used in several proofs.

Definition 3 (Level set.) For = in a set S, the level set of the function
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f(z) corresponding to the constant 7 is the set of points in § for which the
value of f is less than or equal to 7:

{ze S| flz) <7}

For reference, we state formal definitions of local, global and isolated
minimizers for the generic problem (2.1). The definitions given here, taken
from Fiacco and McCormick (1968), are tailored to our treatment of interior
methods, and are slightly different from those in standard textbooks. They
can be specialized in an obvious way to include additional restrictions on z.

Definition 4 (Local constrained minimizer.) The point z* is a local (con-
strained) minimizer of problem (2.1) if there exists a compact set S such
that

f eint(S)NF and f(z*)=min{f(z) |z € SNF}.

Definition 5 (Global constrained minimizer.) The point z* is a global
(constrained) minimizer of problem (2.1) if

€ F and f(z*) =min{f(z) |z € F}.

Definition 6 (Isolated constrained minimizer.) A constrained minimizer
T* is isolated if there is a neighbourbood of z* in which z* is the only
constrained minimizer.

For the nonlinear function f(z), the n-vector g(z) denotes the gradient
(vector of first partial derivatives) of f, and the n x n symmetric matrix
H(z) denotes the Hessian (matrix of second partial derivatives) of f. Given
a nonlinear constraint function c;(z), its gradient will be denoted by a;(z),
and its Hessian by H;(x). For an m-vector c¢(z) of constraint functions,
the m x n Jacobian matrix of ¢ is denoted by A(zx), whose ith row (the
transposed gradient of c;) is a;(z)T.

2.2. Optimality conditions

We now state optimality conditions for three varieties of nonlinear optimiza-
tion problems, without any explanation of the origin of these conditions.
(Optimality conditions for linear programming are given in Section 5.) De-
tailed derivations of optimality conditions are given in, for example, Avriel
(1976); Fiacco and McCormick (1968); Fletcher (1987); Gill et al. (1981);
and Luenberger (1984). Optimality conditions are extremely important be-
cause they not only allow us to recognize that a solution has been found,
but also suggest algorithms for finding a solution.

Unconstrained optimization. The definition of a local unconstrained mini-
mizer will be important in our discussion of barrier functions, where ‘uncon-
strained’ implies that no constraints are locally relevant.
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Definition 7 (Local unconstrained minimizer.) The point z* is a local
unconstrained minimizer of f(z) if there exists a compact set S such that

¥ c¢int(S) and f(«*) = {min f(z) | z € S}.

The following conditions are well known to be necessary for z* to be an
unconstrained minimizer of f(z):

g(z*)=0 and H(z*) >0, (2.4)

where the notation ‘M > (0’ means that the matrix M is positive semi-
definite. (Similarly, ‘M > 0’ means that M is positive definite.)
Sufficient conditions for z* to be an isolated unconstrained minimizer of
f(zx) are
g(z*)=0 and H(z*) >0. (2.5)

The ‘order’ of an optimality condition refers to the highest order of the
derivatives that it contains. For example, the requirement that g(z*) = 0 is
a first-order optimality condition.

Linear equality constraints. Consider the problem of minimizing f(z) sub-
ject to linear equality constraints:

mifé%ize f(z) subject to Az =0b, (2.6)

where A is a constant m x n matrix. (Note that A is the Jacobian of the
linear constraints Az — b = 0.) Let N denote any matrix whose columns
form a basis for the null space of A, i.e. for the subspace of vectors p such
that Ap = 0. Although the null space itself is unique, in general there are
an infinite number of associated bases.

The following conditions are necessary for the point z* to be a local solu-
tion of (2.6):

Ar* = b (2.7a)
g(z*) = ATX* for some X*; (2.7b)
NTH(z*)N > o. (2.7¢)

Sufficient conditions for z* to be an isolated solution of (2.6) are that (2.7a~
b) hold and that NTH(z*)N is positive definite.

The first-order condition g(z*) = ATA* of (2.7b) means that the gradient
of f at an optimal point can be expressed as a linear combination of the
columns of A7, and hence lies in the range space of AT. The Lagrange
multiplier X* represents the set of coefficients in this linear combination,
and is unique if A has full row rank.

The Lagrangian function for problem (2.6) is

L(z,)\) = f(z) — AT (Az - b), (2.8)
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where A is an m-vector. Condition (2.7b) can be interpreted as a statement
that t*}‘le gradient of the Lagrangian function with respect to = vanishes when
A=A

The relation g(z*) = ATX* is also equivalent to the condition N Tg(z*) = 0,
namely, the projection of g(z*) into the null space of A vanishes. (The vector
NTy(z) is called the reduced gradient of f at z.) Condition (2.7b) is therefore
analogous to the requirement in the unconstrained case that the gradient
itself must be zero.

The matrix NTH(2*)N appearing in the second-order optimality condi-
tion (2.7c) is the Hessian of f projected into the null space of A, and is
called the reduced Hessian of f. For linear equality constraints, the reduced
Hessian plays the same role in optimality conditions as the full Hessian in
the unconstrained case.

The feasibility and first-order optimality conditions (2.7a-b) satisfied by
£* and X* can conveniently be summarized as a system of (n+m) nonlinear
equations in the variables (z, A):

B(z,)) = ( g(‘jx“_ff’\ ) = ( g ) . (2.9)

These equations state that the gradient of the Lagrangian function (2.8) and
the constraint vector Az — b should both be zero.

Nonlinear inequality constraints. The final problem category to be discussed
is the generic problem with nonlinear inequality constraints:

nugelg}‘lze f(z) subject to c(z) >0, (2.10)
where ¢(z) consists of m component functions. The constraint ¢;(z) > 0 is
said to be active at Z if ¢;(Z) = 0 and inactive if c;(€) > 0. Let A(z) denote
the Jacobian of the active constraints at x, and let N(z) denote a matrix
whose columns form a basis for the null space of A.

Nonlinear constraints can be extremely complicated, and necessary opti-
mality conditions can be stated only after making assumptions about the
constraints (called regularity assumptions or constraint qualifications); see,
for example, Avriel (1976), Fiacco and McCormick (1968) or Fletcher (1987).
The most common form of constraint qualification is an assumption that the
gradients of the active constraints are linearly independent (or that the con-
straints are linear).

The Lagrangian function for problem (2.10) is defined as

L(z, \) = f(z) — ATe(x) (2.11)

(see (2.8)). For future reference, we note that the Hessian of the Lagrangian
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with respect to =, denoted by W, is given by

W(z,\) = ViL(z,)\) = H(z) - i \Hi(z). (2.12)

i=1

If a suitable constraint qualification holds at z*, the following conditions
can be shown to be necessary for the point z* to be a constrained minimizer
of (2.10):

ez > o (2.13a)

g(z*) = A@E*)TA® for some X*; (2.13b)

Me@E*) = 0, i=1,...,m; (2.13¢)

Mo>0 i=1,...,m (2.13d)

N@E&*)TW(*, )N > o. (2-13e)

Condition (2.13c), which forces at least one of c;(z*) and A} to be zero for
every 1, is called a complementarity condition. In particular, it means that
if c;(z*) > 0, i.e. constraint i is inactive at =*, then X} must be zero.

Because the multipliers for inactive constraints are zero, the first-order
condition (2.13b) states that the gradient of f at z* is a linear combina-
tion of the active constraint gradients, so that N(z*)Tg(z*) = 0. Trivial
rearrangement of (2.13b) also reveals that the gradient of the Lagrangian
function with respect to z vanishes at z* when A = \*, ie. z* is a sta-
tionary point of the Lagrangian function when A = X*. However, z* is not
necessarily a minimizer of the Lagrangian function.

A crucial distinction arising from constraint nonlinearities can be seen in
the second-order condition (2.13e), which involves the reduced Hessian of
the Lagrangian, rather than the reduced Hessian of f alone. The inclu-
sion of constraint curvature is an essential feature of efficient algorithms for
nonlinearly constrained problems.

Sufficient conditions for z* to be an isolated constrained minimizer of
(2.10) are: (i) a suitable constraint qualification applies at z* (for exam-
ple, the gradients of the active constraints at z* are linearly independent);
(ii) conditions (2.13a—) are satisfied; and (iii) the following strengthened
versions of (2.13d—e) hold:

XNo> 0 if g(a®)=0; (2.14)
N(E)TW(*, X)NE*) > o. (2.15)

Inequality (2.14) is called strict complementarity, and holds when all La-
grange multipliers associated with active constraints are positive. The prop-
erty of strict complementarity is often assumed because the presence of a
zero multiplier for an active constraint creates complications.
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Condition (2.15) is equivalent to the existence of a > 0 such that
pTW(z*,X)p > allp||® for all p such that A(z*)p = 0. (2.16)

2.8. Converity

Most work on interior methods to date has focused on convex optimization
problems, of which linear programming is the most obvious instance. As we
shall see, many complications that arise for general optimization problems
disappear in the presence of convexity. See Rockafellar (1970) for a complete
treatment of convex analysis.

Definition 8 (Convex set.) The set S is convex if, for every , and z3 in
S, and for all 6 satisfying 0 < 6 < 1, the point z = (1 — 0)z; + 0z is also in
S.

Definition 9 (Convex and concave functions.) The function f(z), defined
for z in a nonempty open convex set S, is convex if, for every two points z ;
and z in S, and for all 6 satisfying 0 < 8 <1,

(1= 0)z1 +022) < (1~ B)f(21) + 6 (z2). (217)

(If the set S is not specified, it is assumed to be R™.) The function f is
concave if —f is convex. The function f is strictly convex if the inequality
in (2.17) is strict when z; # z3 and 0 < < 1.

Several useful results associated with convexity are:

the intersection of a finite number of convex sets is convex;

all level sets of a convex function are convex;

3  given a set of convex functions {pi(z)}, ¢ =1, ..., m, the set of points
satisfying ;(z) < 0 is convex;

4  the smooth function f(x), defined for z in an open convex set S, is

convex if its Hessian matrix H(z) is positive semi-definite for all z € S,

and strictly convex if H(z) is positive definite for all z € S.

N =

Conver programs are constrained optimization problems with important
special properties. It should be stressed that the only equality constraints
permitted in a convex program are linear constraints.

Definition 10 (Convex program.) The problem of minimizing f(z) sub-
ject to the linear equality constraints Az = b and the inequality constraints
¢i(z) >0,i=1, ..., m,is a convex program if f(z) is convex and —c;(z) is
convex fori=1,..., m.

A slight irritation is that our generic form for inequality constraints in-

volves a ‘greater than’ relation (c;(z) > 0) for expositional convenience.
Unfortunately, an optimization problem with constraints in this form is a
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convex program only if each negative constraint function —c;(z) is convex,
i.e. if ¢;(z) itself is concave. Hence minus signs appear throughout our dis-
cussion of the constraints in convex programs.

Using these definitions, it is easy to see that a linear function is convex
(and also concave), and that a linear programming problem is a convex
program. Two properties that are important in interior methods for linear
programming are stated formally in the following theorems; see Fiacco and
McCormick (1968) or Fletcher (1987) for details.

Theorem 1 If z* is a local constrained minimizer of a convex program-
ming problem, it is also a global constrained minimizer. Further, the set of
minimizers of a convex program is convex.

Theorem 2 If the optimization problem (2.10) is a convex program, and
if £* satisfies the feasibility and first-order necessary conditions (2.13a—d),
then z* is a global constrained minimizer of (2.10).

3. Barrier methods
S.1. Intuition and motivation

Suppose that we wish to minimize f(x) subject to a set of inequality con-
straints ¢;(z) > 0, ¢ = 1, ..., m. If the constraints affect the solution,
either an unconstrained minimizer of f(z) is infeasible (for example, when
minimizing z? subject to £ > 1), or else f(z) is unbounded below when
the constraints are removed (for example, when minimizing z3 subject to
z 2> 1). Consequently, if an optimization method tries to achieve a ‘large’
reduction in the objective function from its value at a feasible point, the
iterates tend to move outside the feasible region. In fact, many popular
algorithms for nonlinearly constrained optimization (such as SQP methods;
see, for example, Fletcher (1987), and Gill et al. (1981)) typically produce
infeasible iterates that approach feasibility only in the limit.

When feasibility at intermediate points is essential — for example, in prac-
tical problems where the objective function is meaningless unless the con-
straints are satisfied — it seems desirable for iterates to approach the con-
strained solution from the interior of the feasible region. Barrier methods
constitute a well known class of methods with this property.

Barrier methods may be applied only to inequality constraints for which
strictly feasible points exist. This property does not hold for all inequality
constraints, even if the feasible region is nonempty; for example, consider
the constraints 1 + z9 > 0 and —z;1 — z2 > 0, for which the feasible region
consists of the line {z; + z2 = 0}.

Given an initial strictly feasible point and mild assumptions about the
feasible region, strict feasibility can be retained by minimizing a composite
function consisting of the original objective f(z) plus a positive multiple of
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an infinite ‘barrier’ at the boundary of strict(F). The most effective methods
for unconstrained optimization (such as Newton’s method; see Section 4)
require differentiability. A suitable barrier term is therefore composed of
functions that are smooth at strictly feasible points, but contain a positive
singularity if any constraint is zero. Under these conditions, a minimizer of
the composite function must occur at a strictly feasible point.

When the barrier term is heavily weighted, a minimizer of the compos-
ite function will lie, informally speaking, ‘far away’ from the boundary. If
the coefficient of the barrier term is reduced, the singularity becomes less
influential, except at points near the boundary; minimizers of the compos-
ite function can then move closer (but not ‘too close’) to the boundary.
The weight on the barrier term thus tends to regulate the distance from
the iterates to the boundary. In the parlance of modern interior methods,
the barrier term forces the iterates to remain centred in the strictly feasible
region.

As the factor multiplying the barrier term decreases to zero, intuition
suggests that minimizers of the composite function will converge to a con-
strained solution z* that lies on the boundary of strict(F). We shall see
later (Sections 3.3 and 3.4) that this intuition can be verified rigorously
under reasonably mild conditions.

We stress that there is ample room for many formulations of a ‘barrier
function’, as indicated by the range of definitions in Fiacco and McCormick
(1968) and in Nesterov and Nemirovsky (1989). Other varieties of compos-
ite functions — called ‘potential’ and ‘centering’ functions — have also been
proposed for use in interior methods; see, for example, Sonnevend (1986)
and Gonzaga (1992). Karmarkar’s original (1984) LP algorithm included a
logarithmic potential function. The method of centres of Huard (1967) im-
poses an additional constraint at each iteration based on the current value
of the objective function; see Renegar (1988) for an LP method based on
this idea.

In all cases, the composite functions display a common motivation of
simultaneously reflecting the objective function (thereby encouraging its re-
duction) as well as forcing iterates to stay ‘nicely centred’ in the feasible
region. They differ, however, in the balance of these sometimes conflicting
aims.

3.2. The logarithmic barrier function

For simplicity, we discuss only the simplest barrier function based on a log-
arithmic singularity, which was not only the most popular in the 1960s, but
also has received substantial attention since 1984. The logarithmic barrier
function was first defined by Frisch in 1955, and was extensively studied
and analysed during the 1960s. Detailed theoretical discussions of classical
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barrier methods, along with historical background, are given in Fiacco and
McCormick (1968) and Fiacco (1979).

The logarithmic barrier function associated with minimizing f(z) subject
to c(z) > 0is

B(z,p) = f(z) ~ p )_Inci(2), (3.1)
i=1

where the barrier parameter p is strictly positive. (When the meaning is
clear, we may write B with a single argument p or without arguments.)
Since the logarithm is undefined for nonpositive arguments, the logarithmic
barrier function is defined only in strict(F).

Simply stating the definition (3.1) does not give an adequate impression
of the dramatic effects of the imposed barrier. Figure 1 depicts the one-
dimensional variation of a barrier function for two values of u. Even for the
modest value p = 0.1, the (visually) extreme steepness of the singularity is
evident.

Fig. 1. The one-dimensional behaviour of a barrier function.

The intuitive motivation for a barrier method is that we seek uncon-
strained minimizers of B(z,u) for values of yu decreasing to zero. If the
solution z* of the constrained problem lies on the boundary and exact arith-
metic is used, a barrier method can never produce the exact solution. Bar-
rier methods consequently terminate when the current iterate satisfies some
approximation to the desired optimality conditions. ‘Classical’ barrier algo-
rithms as well as many recent interior methods have the following form:

Generic Barrier Algorithm

0. Set zq to a strictly feasible point, so that ¢(zo) > 0, and set ug to a
positive value; k — 0.

1. Check whether z; qualifies as an approximate local constrained mini-
mizer for the original problem (2.10). If so, stop with z as the solution.

2. Compute an unconstrained minimizer z(ux) of B(z, ux)-

8. ziy1 — z(uy); choose pry1 < pr; k — k + 1; return to Step 1.
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In practice, the calculation of z(uy) in Step 2 is carried out approximately,
and only a few iterations of an unconstrained method may be performed
before the barrier parameter is updated. In the theoretical results given
here, we assume that z(u) is an exact unconstrained minimizer.

We illustrate the behaviour of the generic algorithm on a simple two-
variable example:

minimize 12 — %w% — 9
subject to x4+ 22 <2
zizy <10
The first constraint is satisfied inside the circle of radius v/2 centred at the
origin; although the second constraint is redundant, it nonetheless affects
each minimizer of the barrier function. The point z* = (—~1,1)7 is an iso-
lated local constrained minimizer at which only the first constraint is active.
Figure 2 depicts selected barrier minimizers converging to z*, which lies on
the boundary of the feasible region (depicted as a dashed curve).

-

i
I
!
1
Fig. 2. Convergence of barrier minimizers to z* = (—1,1)T.

The next two sections provide a rigorous foundation for the generic ap-
proach, including the assumptions necessary to make it succeed in converging
to a solution z* of the original constrained problem. After establishing local
convergence properties, we return in Section 3.5 to a more detailed analysis
of the sequence of barrier minimizers.

8.8. Theoretical results for convex programs

Pre-1984 presentations of barrier methods for nonlinear problems typically
begin with general results, which are then specialized to convex programs.
We have chosen instead to give a self-contained presentation of the convex
results first. Readers whose primary interest is in interior methods for linear
and convex programming can read this section only and skip to Section 3.5.
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Consider the convex programming problem

mineiglize f(z) subject to c¢i(z)>0, i=1,...,m, (3.2)
T n

where f and {—c;} are convex. In this section, F denotes the feasible region
for the constraints of (3.2). Recall from Theorem 1 that every local min-
imizer of a convex program is a global minimizer; hence, if any minimizer
exists, the optimal value of f in F is unique.

An obvious fundamental question involves the conditions under which a
solution z* of (3.2) is the limit of a sequence of unconstrained minimizers
of the barrier function. The main assumption needed to prove convergence
results is that the set M of minimizers of (3.2) is bounded. (We know already
from Theorem 1 that M is convex.) Boundedness of the set of minimizers
holds automatically under the much stronger assumption that the feasible
region itself is bounded.

The major results of this section are given in Theorem 5. Two other
theorems serve as a prelude.

Theorem 3 (a version of Theorem 24 in Fiacco and McCormick (1968))
shows that, if a set of convex functions defines a bounded feasible region,
then suitably perturbed versions of the same functions also define a bounded
feasible region. The application of this theorem in the proof of Theorem 4
involves a level set derived from the objective function.

Theorem 3 (Boundedness of perturbed convex sets.) Let —¢;(z) be a
convex function for i = 1, ..., m, and assume that the convex set

N={z|pi(z) 20, i=1,...,m}

is nonempty and bounded. Then for any set of values {A;}, where A; > 0,
i=1, ..., m, the set

{zl(Pi(x)Z_Ai’ i=11"'1m}
is bounded.

Proof. The result will follow in an obvious way if verified for A; > 0 and
A; =0,i#1. Given A; > 0, let 7 denote the set

M ={z]|pi(z) > -A; and p; 20, i=2,...,m}.

Because N is the intersection of a finite number of convex sets, N7 is convex.

To prove by contradiction that N is bounded, we assume the contrary:
for any point z; € N, there exists a ray emanating from z, that does not
intersect the boundary of N, so that z; + ap lies in N for some direction
p and any a > 0. (The fact that any unbounded convex set must contain a
ray is standard; see, for example, Griinbaum (1967).)

Because N is bounded by assumption, there must be a point x5 on this
ray that does not lie in V. Let z3 be such a point, given by £ = z1 +azp for
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some ay > 0, for which ¢; assumes a negative value, say ¢1(z2) = —6 <0,
where 6 < A1.

Let x3 denote a point on the ray that lies beyond z, i.e. 3 = 71 + asp,
where a3 > a3. The point x5 can then be written as

z2 =21+ 0(z3 — 1) = (1 — O)z1 + Ox3, (3.3)

where 0 < 8 < 1.
Applying Definition 9 of a convex function to the expression (3.3) for z o,
we obtain

(1= 0)p1(z1) + Op1(z3) < p1(z2) = -6,
which gives
0p1(z3) < =6 — (1 — O)p1(z1).
Because p;1(z1) > 0 and 0 < 8 < 1, it follows that

p1(x3) < :9—6-

If 0 is sufficiently small, namely 8 < §/A;, the value of p;(z3) must be
strictly less than —A1, which shows that z3 cannot lie in M;. This gives the
desired contradiction, and shows that A; must be bounded. O

The next result is related to Lemma 12 in Fiacco and McCormick (1968),
which applies to a general barrier function. Given a convex program with a
nonempty strict interior and a bounded set of minimizers, the theorem states
that any particular level set of the logarithmic barrier function is bounded
and closed. The boundedness property is important because it implies that
the set of minimizers of the barrier function is bounded.

Theorem 4 (Compactness of barrier function level sets.) Consider the
convex program of minimizing f(z) subject to ¢i(z) >0,i=1, ..., m. Let
F denote the (convex) feasible region. Assume that strict(F) is nonempty
and that the set of minimizers M for the convex program is nonempty and
bounded. Then for any u; > 0 and any constant 7, the level set

S(1) = {z € strict(F) | Bz, pur) < 7}
is bounded and closed, where B(z, i) is the logarithmic barrier function.

Proof. Boundedness of S(r) will be established by showing that, under
the stated assumptions, the barrier function cannot remain bounded above
while its argument becomes unbounded.

Let £ denote any point in strict(F) (which is assumed to be nonempty).
Given any € > 0, let D denote the level set defined by the values of f (£)
and e

D={zeF|f(z) < f(&)+e} (3.4)
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Convexity of f implies that D is convex (see Section 2.3). The functions
f and {c¢;} are smooth, so that D is closed. The first step in proving the
theorem is to show that D is bounded, from which it will follow that D is
compact.

To show that the set D is bounded, we invoke Theorem 3. Let f* denote
the minimum value of f(z) for z € F. Because every local minimizer of a
convex program is a global minimizer (see Theorem 1), the quantity A =
f(£) + € — f* must be positive. By assumption, the set M, which may be
written as {z € F | f(z) < f*}, is nonempty and bounded; further, M is
convex because f is convex. We now define the function ¢(z) as f* — f(z),
and observe that —¢ is convex. Theorem 3 then applies to ¢ and the positive
perturbation A, and implies boundedness of the set

{zeFlo@)2-At={zeF|f - f(@=) 2" - f(&) -},
which is simply a rearranged definition of D. Consequently, D is compact.

It is straightforward to see that its boundary, bnd(D), is also compact. The
definition (3.4) of D shows that & does not lie on the boundary of D.

Having established the compactness of D and its boundary, we can now
prove boundedness of S(7) by contradiction. Assume the contrary of the
desired result, namely that for some ux > 0, there is an unbounded sequence
{y;} of points in strict(F) for which the barrier function values B(y;, ux)
remain bounded above.

For such a sequence, let j be sufficiently large so that y; lies outside D.

By definition of D, it must hold that
fly;) > f(£) +e

Let z; be the point on the boundary of D where the line connecting £ and

y; intersects the boundary. (Because D is convex, z; is unique.) Let A; be
the scalar satisfying 0 < A; < 1 such that

zj = (1= X)) + Ajy;. (3.5)

We have assumed that ||y;|| is unbounded for sufficiently large j. Since ||z;]|
is finite, (3.5) shows that

Aj =0 as j—oo. (3.6)

Because £ and y; are both in strict(F), we know that c;(£) > 0 and
c¢i(y;) >0fori=1, ..., m. Convexity of —c;(z) combined with (3.5) gives

ci(2z;) 2 (1= Aj)ei(d) + Aje(y;) > 0, (3.7

which shows that z; € strict(F). Since z; is by definition in bnd(D), we
conclude from (3.4) that f(z;) = f(£) + €. Because f is convex (see Defini-
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tion 9), (3.5) implies

fz) £ A= X)f(£) + A f(y))-
Dividing by A; and substituting f(2;) = f(£) + ¢, we obtain a lower bound
on f(y;):

fm02ﬂﬂ+iu (3.8)

It then follows from (3.6) that
f(yj) > o0 as j— o0,

so that the objective function values at {y;} become unbounded.
Turning back to the constraint functions, positivity of A; means that the
first inequality in (3.7) can be rewritten as

ci(zj) — ci(#)
],\_j° (3.9)

Since the set bnd(D) is compact, the function ci(z) — ¢i(£) achieves its
maximum for some z € bnd(D). Let d; denote

d; = max{c;(z) — ¢;(£) | z € bnd(D)}.

We now wish to demonstrate that d; > 0. Because z; € bnd(ﬁ) and
¢i(y;) > 0, we apply the definition of d; and relation (3.9) to show that

ci(y;) < ci(€) +

N, i :
ci(Z) + x >ci(y;) >0, i=1,...,m. (3.10)
j

If d; were negative, the first expression in (3.10) would eventually become
negative as A\; — 0, which is impossible. It follows that d; > 0 for ¢ = 1,
ey M

Finally, the barrier function B(y;, ux) is formed. Using (3.8), (3.10),
monotonicity of the logarithm function, and positivity of u, we have:

B(yj, k) = f(y;) — e Y Inci(yy)
> f(&)+ j—] — e 3 In(ci(8) + (di/ )

@) + vy Zln(;f(a":)+(d.‘/xj)). (3.11)
7

The logarithm function has the property that, for a positive constant v
and 6 > 0,

,\l.if& )\ln(u + f\‘-) = 0.

Thus the limit of the numerator in (3.11) is ¢, and the quotient in (3.11) is
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unbounded above as A; — 0. It follows that B(y;, ut) is unbounded above
as j — 00, thereby contradicting our assumption that the barrier function
values { B(y;, ux)} are bounded above for an unbounded sequence {y;}. This
proves that S(7) is bounded.

To show that S(7) is closed, we prove that it contains all its accumulation
points. Let {z;} be a convergent sequence in S(7), with limit point £. It
follows from the continuity of f and {c;} in strict(F) that £ must satisfy
B(&, pux) < 7. Further, Z must either be in strict(F) or else have the property
that ¢;(Z) = O for at least one index <.

If £ is in strict(F), by definition £ is in S(7). Suppose that Z is not
in strict(F). Then, because ¢;(Z) = 0 for some index i, unboundedness of
the logarithm for a zero argument and convergence of {z;} to Z together
imply that, for sufficiently large j, the barrier term — >3i2, In¢;(z;) cannot
be bounded above. In particular, for any constant v and sufficiently large 7,

m
- Zlnq(xj) > . (3.12)
i=1
We now define v as v = (7 — f*)/ux; the value of « is finite because f*
is finite. Since z; lies in strict(F), we know from the convexity of f that
f(z;) > f*, which means that —f* > — f(z;). Applying this inequality and
the definition of 4 in (3.12), we obtain

—Zlnc,(x]) > f(zj)
After rearrangement, this relation implies that B(z,,px) > 7, ie., that
zj ¢ S(7), a contradiction. We conclude that any accumulation point of a
sequence in S(7) must lie in S(7), which means that S(7) is closed.

We have shown that S(7) is both bounded and closed; its compactness is
immediate. O

We are now ready to give the main theorem concerning barrier methods
for convex programs. The most important result is (vi), which shows that
limit points of a minimizing sequence for the barrier function converge to
constrained minimizers of the convex program.

Theorem 5 (Convergence of barrier methods on convex programs.) Con-
sider the convex program of minimizing f(z) subject to c;(z) > 0, i = 1,

.., m. Let F denote the feasible region for this problem, and assume that
strict(F) is nonempty. Let {ur} be a decreasing sequence of positive barrier
parameters such that limy_,,, g = 0. Assume that the set M of constrained
local minimizers of the convex program is nonempty and bounded, and let
f* denote the optimal value of f. Then

(i) the logarithmic barrier function B(z, ux) is convex in strict(F);
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(ii) B(x,pr) has a finite unconstrained minimizer in strict(F) for every
tx > 0, and the set M of unconstrained minimizers of B(z, ux) in
strict(F) is convex and compact for every k;

(iii) any unconstrained local minimizer of B(x,ux) in strict(F) is also a
global unconstrained minimizer of B(z, uy);

(iv) let yx denote an unconstrained minimizer of B(x, ) in strict(F); then,
for all k,

f(yr+1) < f(yx) and Z Inci(yk) < Z In i (yk+1);

(v) there exists a compact set S such that, for all k, every minimizing point
yr of B(z, pi) lies in S N strict(F);

(vi) any sequence {y} of unconstrained minimizers of B(z, ux) has at least
one convergent subsequence, and every limit point of {yx} is a local
constrained minimizer of the convex program;

(vii) let {zx} denote a convergent subsequence of unconstrained minimizers
of B(z, ux); then hm flz) =

(viii)klingo By = f*, where By denotes B(zy, pk)-

Proof. It is straightforward to prove convexity of B(z, ux) using the convex-
ity of f and {—c;}, monotonicity of the logarithm function and Definition 9
of a convex function. Thus (i) is established.

The assumptions of this theorem are the same as those of Theorem 4.
Let zy denote the strictly feasible point at which the barrier iterations are
initiated. For the barrier parameter uj and some ¢ > 0, we define the set
So as:

So = {z € strict(F) | B(z, ux) < B(zo, px) + €}

Theorem 4 implies that Sy is compact for all g > 0. It follows that the
smooth function B(x,ui) assumes its minimum in Sg, necessarily at an
interior point of Sy. We then apply Definition 7 and conclude that B(z, uj)
has at least one finite unconstrained minimizer.

Because B(z, ux) is convex, any local minimizer is also a global minimizer,
so that every unconstrained minimizer of B(x, ux) must be in the set Sy.
Thus the set M}, of unconstrained minimizers of B(z, ux) is bounded. The
set My is closed because the minimum value of B(z, sx) is unique, and it
follows that M, is compact. Convexity of M}, follows from Theorem 1, and
result (ii) has been verified.

Result (iii) follows from Theorem 1, and results (i) and (ii).

To show result (iv), let yi and yx41 denote global minimizers of the barrier
function for the barrier parameters pix and ug.1. By definition of y; and
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VYr+1 8 minimizers, we have

F) - e Sleue) < Fluke) — i S Inci(pran); (3.19)
i=1

i=l1

m m
1) — 1 Y Inci(yer) < f(ur) — 1 D Inci(yr).
i=1 i=1
We multiply the first of these inequalities by the ratio ux4+1/pk, which lies
strictly between 0 and 1, add the resulting inequality to the second inequal-
ity, cancel the terms involving logarithms and obtain

f(yk+1)( - %) < f(yk)(l - ‘—‘1—2’1)

Since 0 < pg41 < pk, it follows that f(yk+1) < f(yx). Applying this result
in (3.13) and dividing by the positive number u), we obtain

- ilnci(yk) < —ilnci(ykn), (3.14)
i=1 i=1

as required for the second part of (iv).

To verify existence of the set S in (v), we use result (iv). Let f; denote
f(yx). Since fry1 < fi for each k, the compact convex level set {z € F |
f(x) < fx} not only contains all minimizers of B(z, u), but also contains
all minimizers of B(z, ur+1). The compact convex level set S defined by the
strictly feasible point xg,

§={zeF| f(=) < fzo)}, (3.15)

accordingly contains M as well as all minimizers of B(z, ;) for all k.

Now we show (vi). It follows from the last statement of the preceding
paragraph that every minimizer y; must lie in the compact set S defined
by (3.15). We conclude that the sequence {yx} is uniformly bounded, and
hence contains at least one convergent subsequence, say with limit point £.
Because y; lies in S for all &, £ must be feasible.

To prove that £ is a local constrained minimizer of the convex program,
we assume otherwise, that £ ¢ M. Since every local solution of a convex
program is a global solution, this would imply that f(£) > f*. A contra-
diction is now established from this inequality and the definition of £ as a
limit point of a convergent subsequence of minimizers of B(z, ux).

Let {z\} denote a subsequence of {y;} converging to £. Continuity of f
and the relation fi > fr41 imply that, for all k,

f(zx) 2 f(2)- (3.16)
We next show that there must exist a strictly feasible point z;,; such that

f(2) > f(int)-



INTERIOR METHODS 363

Let z* denote any point in the set M of constrained minimizers, so that
f(*) = f* and z* is in the set S defined by (3.15). If z* itself is strictly
feasible, we simply take z;i,; = ¥, since our initial assumption was that
£(&) > f(z*).

If ¥ is not strictly feasible, ziy, is found as follows. By assumption,
strict(F) is nonempty, and hence contains at least one point, say z; the
definition and uniqueness of f* guarantee that f(2) > f(z*). If f(2) < f(£),
z may be taken as zin. If f(z) > f(£), consider a generic point £ on the
line segment joining z* and z, defined by & = (1 — A)z* + Az for \ satisfying
0 < XA < 1. Because z is strictly feasible and —c¢; is convexfori =1, ..., m,
we have

ci(Z) > (1 — Nei(x*) + Aci(z) > 0,
so that £ is strictly feasible.
Convexity of f implies that
F&) < (1= Nf(a") +2f(2),

where f(z) > f(£) > f(z*). Using continuity of f, we see that f(Z) < f(£)
for some suitably small A, namely A such that

f(&) - f(=)

A< —————-=<1. 3.17
7&) = 7@) (317

For any A satisfying (3.17), £ may be taken as Tiy;.
Thus far we have shown that, if £ is not in the minimizing set M, then a
strictly feasible point iy exists such that

f(zx) 2 f(#) > f(@ine)- (3.18)
Since zi is a global minimizer of B(z, ux),
m m
fzr) — e Y Inci(zk) < f(@ine) — sk Y 10 ¢i(Tine)- (3.19)
The barrier term involving ziy in (3.19) is finite, and
Jm B(Zins, ) = f(Zint)-
—00
If the limit point £ of {z} is also strictly feasible, the barrier term in-
volving zj, in (3.19) is similarly finite as k — oo, and
Jim Bz, px) = f(2).
—00
Letting ¥ — oo in (3.19), we obtain the inequality f(£) < f(Zint), Which
contradicts (3.18).

Suppose, on the other hand, that £ is not in strict(F), so that ¢;(£) =0
for at least one index 1. Adding a barrier term involving z;, to both sides
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of the inequality f(zint) < f(zr), we have

m m
f(@in) — e 3 Inci(@ine) < f(zk) = ok Y, In¢i(Tint)-
i=1 k=1
Combining this inequality with (3.19), rearranging and dividing by uy, we
obtain

F(x) = pe i Inci(zi) < f(zk) — p i In ¢;(Zint)-
k=1

k=1
Cancelling f(zy) from both sides then gives

m m
- z Ine;(zx) < — Z In ¢;(Zint)-
k=1 k=1

The sum on the right-hand side involving z, is finite. However, since £ is
not strictly feasible, —Inc;(z;) approaches infinity for at least one i. The
left-hand side is therefore unbounded above, and we again have a contradic-
tion.

The conclusion is that £ lies in M, the set of minimizers. Because £ is
the limit point of {z}}, we have obtained the crucial result (vi). For the
remainder of the proof, ¥ will denote the limit point of {zx}.

Part (vii) follows immediately from the fact that limy_,. zx = z*.

To show (viii), note first that the optimal value of B(z, u) is unique, and
is equal to B(z,ur). We distinguish two cases, depending on whether or
not z* (the limit point of {z;}) is strictly feasible.

If «* is strictly feasible, the sum of logarithms of the constraints at x, re-
mf.ins finite as k — oo. It is easy to see that in this case lim .o B(Zk, px) =

Consider the other possibility, that £* is not strictly feasible. Since at least
one constraint is converging to zero, the barrier term of B(z, ) must be
positive for all sufficiently large k. Combining this property with (3.14), we
have

0<— ilnq(xk) <- iln Ci(ZTp41). (3.20)
i=1 i=1

One implication of this result is that, for sufficiently large k,

B(zk, pe) > f(zk)- (3.21)
In addition, the minimizing property of z;, the first inequality in (3.20),
and the relation pr41 < pg together give:

f(mk+1)—ﬂk+1zlncz'(wk+1) < f(zk) = pre1 ) Inei(zy)

i=1 i=1
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o) —mn S Ina(er) < flor) —meS lna(a),

i=1 i=1

which shows that, for sufficiently large &,

B(zk+1, k1) < B(Tk, pr)- (3.22)
It follows from (3.21) and (3.22) that, for sufficiently large k,
f* <+ < By < By, (3.23)

where By denotes B(zg, px). The sequence {B;} of barrier function values
is consequently nonincreasing and bounded from below, and must converge
monotonically from above to a limit, say B*, where B* > f*.

Suppose that B* > f*. In this case, we define é as the positive number
3(B* — f*). It follows from continuity of f and the relation f* < B* that
there must be a neighbourhood of z* in which

flx)<B*-6 (3.24)

for all z in the neighbourhood. Consider a particular strictly feasible point
Z in this neighbourhood. (Such a point must exist because F is convex
and strict(F) is nonempty.) Strict feasibility of £ implies that the quantity

w1 In¢;(Z) is finite. Because pr > 0 and px — 0, there must be an integer
K such that, for k > K,

— Uk f: Inci(%) < 16. (3.25)

i=1

Since i, is a global minimizer of B(z, ux), we know that

Bt i) < B ux) = £(&) — i 3 Inci(2).

i=1
If we apply (3.24) and (3.25), the result is
B(xg, p) < B* -6+ %6 =B* - %5,

which contradicts the monotonic convergence of {By} to B* from above.
We conclude that B* = f*, which gives result (viii). O

The implications of this theorem are remarkably strong. For any convex
program with a bounded set of minimizers, the barrier function has a fi-
nite unconstrained minimizer for every value of the barrier parameter, and
every limit point of a minimizing sequence for the barrier function is a con-
strained minimizer. It is not necessarily true in general, however, that every
minimizing sequence converges.

To every convex program, there corresponds a related dual convex pro-
gram. For reasons of space, general results from duality theory will not
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be considered here, except for the following important result: the objective
function value at any unconstrained minimizer x; of B(z, uy) satisfies the
inequality f(xx) — f* < muyx, where m is the number of constraints. We
know from results (iv) and (vii) of Theorem 5 that f* < f(z;). Combining
these bounds, we have

0 < fzx) — f* < muy. (3.26)

This somewhat surprising property implies that, when a barrier method
is applied to a convex program, the deviation of f(z;) from optimality is
always bounded by muy, independently of the particular problem functions.
For comments about duality in linear programming, see Section 5.1.

3.4. Results for general nonlinear programs

Once we move from a convex program to a general nonlinear program,
matters become far more complicated. In particular, certain topological
assumptions are required to avoid pathological cases. Furthermore, the re-
sults apply only in a neighbourhood of a constrained minimizer, and involve
convergence of subsequences of global minimizers of the barrier function.
The general approach in this section follows that in Fiacco and McCormick
(1968).

At the most basic level, the nice property given by Theorem 4 that the
level sets of the barrier function are bounded if the set of constrained mini-
mizers is bounded does not hold for the nonconvex case. If the feasible region
is bounded, the barrier function is obviously bounded below. The following
example of Powell (1972), however, shows that difficulties may arise when
the feasible region is unbounded:

. . . - 3 > . .
minimize ——— 1 subject to z >1 (3.27)
The objective function is bounded below in the feasible region, and the
unique solution is z* = 1. In contrast, the barrier function

is unbounded below in the feasible region, although it has a local minimizer
that approaches z* as u — 0.

The major local convergence results will be given in Theorem 7. To build
up to the statement of this theorem, several preliminary results are required.

The following lemma, an adaptation of Corollary 8 from Fiacco and Mc-
Cormick (1968), plays the role of Theorem 4 for the convex case. The general
result is that, if a continuous function is unbounded above for all sequences
of points in strict(F) and converging to its boundary, then the function

—pln(z —1)
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must achieve its minimum value at a strictly interior point. The obvious
application of Lemma 1 is when B(z, 1) plays the role of .

Lemma 1 Given a set of m smooth constraint functions {c;(z)}, i = 1,

., m, let strict(F) denote the set defined by (2.3). Let S be a compact set,
and assume that the set strict(F)N S is nonempty. Consider any convergent
sequence {yx} € strict(F) NS whose limit point 7 lies on the boundary of
strict(F), i.e. such that

klim yr =y, where § € bnd(strict(F))NS. (3.28)
—00

Suppose that ¢ is a continuous function on strict(F) N S with the property
that ¢(yx) is unbounded above as k — oo for every sequence {y;} satisfying
(3.28). Then the global minimum value of ¢ in strict(F) N S, denoted by
", is finite, and is achieved at some point z* in strict(F) N S:

min{p(z) | z € strict(F) N S} = p(z*) = ¢*
Proof. Given any point £ in strict(F) N S, define the associated level set
W as
W = {z € strict(F) N S | p(z) < ¢},
where ¢ = ¢(£). Because S is compact, W is bounded. Compactness of W
will follow if we show that W is closed, i.e., contains all its accumulation

points.
Let R denote the closed set

R = strict(F) U bnd(strict(F)).

Because S is compact and R is closed, the set RN S is compact. Consider
any convergent sequence {z} such that z; € W for all k, with limit point
Z. Since x; € strict(F) N S, £ must lie in RN S. Hence Z must lie in either
strict(F) N S or bnd(strict(F)) N S.

If Z is in bnd(strict(F)) N S, then {z} is a sequence satisfying (3.28),
which means that ¢(z;) — oo. Since ¢ is an upper bound on the value of ¢
at any point in W, we conclude that x; ¢ W for sufficiently large k, which
is a contradiction. Any limit point T of a sequence in W therefore cannot
be in bad(strict(F)) N S, and must lie in strict(F) N S.

Because zj is in W, the relation ¢(z1) < ¢ holds for all k. Continuity of
¢ in strict(F) N S then implies that the limit point Z satisfies ¢(Z) < @, so
that Z possesses both properties required for membership in W. Since {zx}
is an arbitrary convergent sequence in W, it follows that W contains all its
accumulation points and is closed. A

We know already that W is bounded, so that W is compact. Because
¢ is continuous in the compact set W, it attains its global minimum in
W at some point z*. By definition of W, the value of ¢ at any point in
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strict(F) N S but outside W must be strictly larger than the smallest value
of ¢ at any point in W. Hence z* is the global minimizer of ¢ in the entire
set strict(F) N S, which is the desired conclusion. O

A property needed for local convergence is that a particular subset of local
constrained minimizers is ‘isolated’ within the full set of local constrained
minimizers. Such a definition is unnecessary for the convex case, since the
set of minimizers is convex.

Definition 11 (Isolated subset.) Let M and M* be sets in R” such that
M* C M. The set M* is called an isolated subset of M if there exists a
closed set E such that M* C int(E) and ENM = M*.

Broadly speaking, M™* is ‘separated’ by E from any other points of M.
The definition is satisfied if M* = M, or if M* is an isolated point in M.

The next theorem (a version of Theorem 7 of Fiacco and McCormick
(1968)) shows that, if a set of constrained minimizing points is compact and
isolated, there is a compact set S, strictly enclosing the set of minimizers,
within which the minimizers are global. The role of the set S is critical: if
we can restrict attention to points in S, the value of f at any minimizing
point in S is a strict lower bound on the value of f at any other feasible
(nonoptimal) point in S. For the convex case, a suitable set .S is provided
‘automatically’ by the level set for f at any strictly feasible point; see (3.15).

Theorem 6 (Existence of compact enclosing set.) Consider the problem
of minimizing f(z) subject to ¢;(z) > 0,7 =1, ..., m. Let M denote the
set of all local constrained minimizers with objective function value f*, and
assume that M is nonempty. Assume further that the set M* C M is a
nonempty compact isolated subset of M. Then there exists a compact set
S such that M™* lies in int(S) N F, with the property that for any feasible
point y in S but not in M*, f(y) > f*. The points in M* are thus global
minimizers of the nonlinear program for z € SN F.

Proof. Applying Definition 11, the assumption that M* is an isolated sub-
set of M implies existence of a closed set E strictly containing M* such
that int(E) "\ M = M*,

The assumption that M™* is compact means that we can construct a se-
quence of strictly nested compact sets {S;} converging to M?*, each strictly
containing M™*, namely such that M™ C int(S;) C int(E),

Sj+1CSj, and lm S;= M*. (3.29)
]-—0
The proof will show by contradiction that the desired compact set S may

be taken as S; for some finite j.
If this is impossible, then for every j we can find a feasible point x; with
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the following properties:
z; €FNS;, z; ¢ M* and f(z;) < f*. (3.30)

Consider this hypothetical sequence {z;}. The nested structure of {S;}
means that {z;} is bounded and hence has at least one limit point, say Z.
It follows from (3.29) and the fact that M™ is closed that £ € M*, so that
f(Z) = f* and 7 is a constrained minimizer. Let {y;} denote a subsequence
of {z;} converging to Z, where y; = z;,.

If f(yx) is strictly less than f(£) for an infinite number of indices k, then
every neighbourhood of Z contains feasible points with a strictly smaller
value of f. This means that £ cannot be a constrained minimizer (see
Definition 4) and gives a contradiction.

We conclude that eventually, for some k = k, any point in Sj; that qualifies
as y; (i.e. any feasible point in Sj, for which f(y;) < f*) must have an
objective function value equal to f*. This result implies that f* is the
smallest value of f achieved at feasible points in S, .

Let S denote Sj;. Since all subsequent sets S, for k > k are subsets of
S, as is the minimizing set M*, it follows that f* is the smallest value of f
assumed at any feasible point in S;, for all k£ > k.

The strictly nested property of the sets {S;} means that, for sufficiently
large j, any point x; satisfying (3.30), not necessarily a member of the
subsequence converging to Z, must lie in the interior of the compact set S.
Because z; is feasible and satisfies f(z;) < f*, and the smallest value of f
for any feasible point in § is equal to f*, it must be true that f (zj) = f*.
Since z; lies in the interior of the compact set S and f(z;) = f * x; satisfies
Definition 4 of a local constrained minimizer with function value f*, and
hence z; is in M, the set of such minimizers. However, z; is by definition
in S;, which is contained in the interior of E. Because int(E) " M = M*,
z; must be in M*. 1t follows that, for sufficiently large j, no points in S
satisfy (3.30).

We have constructed a compact set S that strictly contains M*. Further,
S contains no feasible points with objective function values less than f*,
and every feasible point in S with objective function value equal to f* lies
in M*. It follows that any feasible point y in S but not in M™* must satisfy
f(y) > f*. The set S thus satisfies all the criteria specified for S, and the
theorem is proved. O

We now give a fundamental theorem, analogous to Theorems 8 and 10
in Fiacco and McCormick (1968), about local convergence of logarithmic
barrier methods. This theorem assumes two important properties: (a) a
compactness requirement that the relevant set M™* of local minimizers is
nonempty and compact (in the simplest case, M* is a single point); and
(b) a topological restriction that at least one of the points in M* lies in



370 M.H. WRIGHT

the closure of strict(F), i.e. is either strictly feasible or else an accumulation
point of strict(F).

Assumption (b) disallows minimizers that occur at isolated feasible points
(points in a neighbourhood containing no other feasible points). For exam-
ple, consider the constraints z > 1 and z2 — 5z + 4 > 0. The function
z2 — 5z + 4 is nonnegative if z < 1 and if = > 4, so that the feasible points
lie in two separated regions. The constraint £ > 1 eliminates all of the
region {z < 1} except the single point £ = 1. The feasible region for both
constraints therefore consists of the isolated point {z = 1} and the set of
points {z > 4}. Hence strict(F) is the set {z > 4}, and the point z = 1
does not lie in the closure of strict(F).

Barrier methods can be viewed as finding the infimum of f subject to
¢(z) > 0, and consequently cannot converge to minimizers occurring at
isolated points. Isolated minimizers do not arise in the convex case because
a convex set with a nonempty interior cannot contain an isolated point.

Theorem 7 (Local convergence for barrier methods.) Consider the prob-
lem of minimizing f(x) subject to ci(z) > 0,7 =1, ..., m. Let F denote
the feasible region, and let M denote the set of minimizers corresponding
to the objective function value f*. Let {u:} be a decreasing sequence of
positive barrier parameters such that limj_.o px = 0. Assume that

(a) there exists a nonempty compact set M* of local minimizers that is an
isolated subset of M;
(b) at least one point in M* is in the closure of strict(F).

Then the following results hold:

(i) there exists a compact set S strictly containing M ™ such that for any
feasible point Z in S but not in M*, f(Z) > f*;

(ii) for all sufficiently small u, B(z, 1) has at least one unconstrained min-
imizer in strict(F) N int(S), and any sequence of global unconstrained
minimizers of B(x, pi) in strict(F) Nint(S) has at least one convergent
subsequence;

(iii) let {zx} denote any convergent subsequence of global unconstrained
minimizers of B(z,p) in strict(F) N int(S); then the limit point of
{z+} is in M*;

(v) Jim f(ex) = f* = lim Blo, my)

—00 k—o0

Proof. Result (i) follows immediately from Theorem 6, which implies the
existence of a strictly enclosing compact set S within which all points in
M?* are global constrained minimizers.

Consider the behaviour of the barrier function B(z,ux) in the bounded
set strict(F) N S. Continuity of f and {¢;} in F implies that B(z, ux) is
continuous in strict(F) N S. The barrier function possesses the properties
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of ¢ in Lemma 1, which then implies that B(x, ux) achieves a finite global
minimum value at some point in strict(F) N S. (This result is close but not
equivalent to (ii), which states that the minimizing point lies in int(S).) Let
yx be any point in strict(F) N S for which the minimum value is achieved.

The sequence {yx} is bounded and hence has at least one limit point. Let
£ denote a limit point of {y;}. Because yj, is strictly feasible for all k and
the set S is compact, it follows that £ € F N §, so that £ is feasible.

We wish to show that & lies in the set M™ of constrained minimizers, with
f(£) = f*. The result will be proved by contradiction, and we accordingly
assume the contrary, that # ¢ M*.

Since # is feasible and in S, result (i) implies that f(£) > f*. We next
prove that this inequality implies the existence of a strictly feasible point
Tint in S such that

f(&) > f(Tine)- (3.31)

The point ziy, can be found as follows. We know from assumption (b)
that at least one point in M™ is in the closure of strict(F). Let z* denote
such a point, which must either lie in strict(F) or else be an accumulation
point of strict(F). Because M™* is contained in int(S), z* is also in the
interior of S.

If «* itself is strictly feasible, xi,, may be taken as z*. If 2* is not strictly
feasible, * is an accumulation point of strict(F), which means that every
neighbourhood of &* contains strictly feasible points. Further, every neigh-
bourhood of z* contains points in S. We know that: f is continuous; £ is
feasible and lies in S; f(£) > f(z*); and z* is a global constrained minimizer
of f for all feasible points in S. Hence there must be a strictly feasible point
Tint in a neighbourhood of z* for which f(zin) < f(£).

Let {zi} denote a convergent subsequence of {yx} with limit £. The
relation f(£) > f(zin) then implies that, for sufficiently large k,

f(@e) > f(int). (3.32)

Since zipt is in strict(F) N S, our definition of zj as a global minimizer of
B(zx, px) in strict(F) N S implies the inequality

flzk) — px 2 Inci(zk) < f(@int) — pir i In ¢;(Zine). (3.33)

i=1 i=1
Strict feasibility of zi,x means that the barrier term involving z;, in (3.33)
is finite, and
klim B(Z'inc,#k) = f(ltint)-
—00

Suppose that the limit point £ of {zx} is also strictly feasible, namely
£ € strict(F) N S. Then the barrier term involving x is finite as k — oo
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and
klim B(z, ux) = f(£)-
—00

Letting k — oo in (3.33), we obtain the inequality f(zx) < f(Zint), Which
contradicts the relation f(zr) > f(zint) of (3.32).

Suppose on the other hand that £ is not strictly feasible. Adding a barrier
term to both sides of the inequality f(zx) > f(zint) gives

m m
F(@int) = e Y Inci(Tine) < Fxk) — px Y Inci(@ine).-

i=1 k=1
Combining this inequality with (3.33), rearranging and then dividing by ux,
we obtain

f(zk) — e f: Inci(zk) < f(zk) — pi i In ¢;(%int)-

k=1 k=1
Cancelling f(zx) from both sides, the result is

m m
— Z Ine¢i(zy) < — E In ¢;(zint ). (3.34)
k=1 k=1

As before, strict feasibility of z;,; guarantees that the sum on the right-hand
side is fixed and finite. However, since £ is not strictly feasible, — In c;(zx)
approaches infinity for at least one i. The left-hand side of (3.34) is therefore
unbounded above, which again gives a contradiction.

In either case, we have shown that f(£) = f* and hence that # € M*.
Since £ was taken as any limit point of {y;}, we conclude that every limit
point of a convergent subsequence of global barrier minimizers lying in
strict(F) N S must be a constrained minimizer with objective value f*.

Result (ii) is proved by noting that the relation # € M™ means that
% € int(S). Since £ is the limit point of {z}, it must hold that zj is also
in int(S) for sufficiently large k. By definition, z is strictly feasible. Hence
the global minimum of B(z, ug) in strict(F) N S is achieved at some point
zx lying strictly inside both F and S§. Applying Definition 7, the global
minimizer z; of B(z, k) in S is an unconstrained minimizer. Results (ii)
and (iii) are thus proved.

The first relation in (iv), that limg_... f(zx) = f*, follows because f(z) =
f*. The second, limy_,o B(zk, px) = f*, follows from the same arguments
used in proving (iv) and (viii) of Theorem 5, with the additional restriction
here that all points must lie in S. O

At this point we should emphasize what has not been proved. Even within
the set S, a general global minimizing sequence {z} of the barrier function
is not guaranteed to converge. The properties of local minimizing sequences
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are even less secure. In particular, it is not true that every limit point of a
local minimizing sequence is a constrained minimizer.
For example, consider the problem

minimize z subject to z2>0, z> -,

where v > 0 (Moré and Wright, 1990); a similar example is given in Fiacco
(1979). The unique solution is obviously the point 2* = —v. The barrier
function B(z, ) has two feasible minimizers:

1/2
3u—v+ ((3# -7+ 87#)
z(p) = 5

For 4 — 0, the global minimizing sequence corresponds to the negative
square root and converges to —v, the unique solution of the constrained
problem. However, the nonglobal minimizing sequence of B(z,pu), corre-
sponding to the positive square root, converges to the origin, which is not a
constrained minimizer.

Despite these cautions, the bright side is that barrier methods will con-
verge to the solutions of constrained problems for which the usual sufficient
conditions do not hold. Barrier methods can converge, for example, when
the constrained minimizer is not locally unique. Barrier methods can suc-
ceed even when a local constrained minimizer does not satisfy a constraint
qualification.

8.5. The barrier trajectory

In this section, we describe conditions under which a sequence z(u) of barrier
minimizers not only converges to z*, but also defines a smooth path (the
‘barrier trajectory’) that is nontangential to the active constraint gradients.

Discussions of the logarithmic barrier function involve special diagonal
matrices related to vectors, for which the following notation has become
popular. When a lower-case letter refers to a vector, its upper-case version
means the diagonal matrix of comparable dimension whose (%,%) element is
the ith component of the vector. For example, C denotes the m x m diagonal
matrix of constraint values {c;}:

1

Cc2
C = diag(c;) = ) ,

Cm

and C~! is the diagonal matrix whose ith element is 1/c;. Using this
convention, we have the general relation Ce = ¢, where e denotes the
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vector of appropriate dimension whose components are all equal to one,
e=(1,1,...,1)7.
The gradient of B(z, u) with respect to z is

m
VB(z,u) =g~ ¢ ai=g—pATC e, (3:35)
i=1
where all functions are evaluated at z, a; is the gradient of ¢;(z) and A is the
Jacobian of c(z). (Recall that the constraint gradients are the transposed
rows of A and hence the columns of AT.) The Hessian of B(z, p) is

m m
VB,p) = H-S L H+3 £ gl
i=1 G Pl

= H-Y L H 4 ua7c24.
i=1 G
The point z(u) is an unconstrained minimizer of B(z, u) only if the gra-
dient vanishes at z(u). Substituting from (3.35), the following relation must
hold at z(u):

N ()

where the argument u denotes evaluation at z(u). Since g > 0 and ¢;(p) > 0,
it follows that the gradient of f at z(u) is a positive linear combination of
the gradients of all the constraints.

The first-order optimality conditions (2.13b—d) for nonlinear constraints
are

o(@") = AGTTX = Y a X, (337)
i=1

where X} > 0 and Xf¢;(z*) =0,i =1, ..., m. At z*, the gradient of f is
thus a nonnegative linear combination of all the constraint gradients, where
inactive constraints have zero multipliers.

The similar forms of (3.36) and (3.37) reveal that the ith coefficient
p/ci(p) in the linear combination (3.36) is directly analogous to the ith La-
grange multiplier A¥. When standard sufficient optimality conditions hold at
z* and the gradients of the active constraints are linearly independent, the
multiplier estimates u/c;(1) do indeed converge to A¥. In fact, under these
conditions a differentiable curve z(u) of barrier minimizers, parametrized
by p, exists near u = 0 and converges to z*. This curve of minimizers is
called the barrier trajectory; in linear programming, it is usually known as
the central path. Its existence and properties define the broad class of ‘path-
following’ algorithms that attempt to follow the trajectory to the solution;
see Sections 5.2 and 6.2.
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The results of the following theorem are essentially those of Theorem 12
of Fiacco and McCormick (1968).

Theorem 8 Consider the problem of minimizing f(z) subject to ¢;(z) > 0,
i=1,..., m, where m > 1. Let F denote the feasible region, and assume
that strict(F) is nonempty. Assume further that z* is a local constrained
minimizer at which

(a) g(z*) = A(z*)TX*, with Xf¢;(z*) = 0;

(b) X¥>0if c;(z*) = 0;

(c) there exists a > 0 such that pTW(z*, X*)p > a||p||? for all p satisfying
Ap = 0, where A denotes the Jacobian of the active constraints at z*
and W is the Hessian of the Lagrangian function (see (2.12));

(d) the gradients of the active constraints at z* are linearly independent.

Consider a logarithmic barrier method in which B(z, ux) is minimized for a
sequence of positive values {4} converging monotonically to zero as k — oo.
Then

(i) there is at least one subsequence of unconstrained minimizers of the
barrier function B(z, ux) converging to z*;

(ii) For such a convergent subsequence {z},

klim pr/ck = /\’:, where c¥ denotes c;(zy);
—+00

(iii) for sufficiently large k, the Hessian matrix V2B (zy, ux) is positive def-
inite;

(iv) a unique, continuously differentiable vector function z(u) of uncon-
strained minimizers of B(z, i) exists in a neighbourhood of u = 0;

(v) limo(u) = z*.

Proof. The properties assumed about z* ensure that it is an isolated con-
strained minimizer. Two implications follow from the linear independence of
the active constraint gradients: the Lagrange multipliers A* are unique; and
every neighbourhood of z* contains points in strict(F), so that z* is in the
closure of the interior of the feasible region. Theorem 7 consequently applies
to z*, and implies that there is at least one subsequence of unconstrained
minimizers of B(z, u) converging to z*. This proves (i).

Let {zx} denote such a convergent sequence, with redefinition of k as
necessary, so that

lim z; = z*. (3.38)

k—o00

As convenient, we denote quantities associated with x; by a subscript or
superscript k; the subscript ¢ always denotes the ith component of a vector.
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For sufficiently large k, z; is an unconstrained minimizer of B(x, uy),
which means that the gradient (3.35) of the barrier function vanishes at z ;:

m
g = Zaf/\f, where \f = % (3.39)

=1 i

The quantity \¥ is strictly positive for any ux > 0.
Suppose that constraint i is inactive at z*. Then, from (3.38),

lim ¢f =¢;(*) >0, and hence lim A’ =\ =o0. (3.40)
k—oo k—o0
If no constraints are active, we have verified (ii).

Otherwise, let A denote the set of indices of constraints active at z*, so
that c;(z*) = 0 for i € A. Let the positive numbers s;, and v* be defined as

8p = EAf and vf = i.

i=1

Note that vF > 0 and 37, v¥ = 1, so that v* < 1. Since s; > 0 and (3.39)
holds at zj, we have

1 m
;gk =) afvf=0. (3.41)
i=1
As k — o0, the sequence {'ufc } is bounded for i = 1, ..., m, and accordingly

contains a convergent subsequence.

The value of lim inf_,., si, denoted by §, must be finite. If not, consider
(3.41) as k — oo. Because of (3.38), a¥ converges to a}, where the super-
script * denotes evaluation at =*. The following relation must hold for any
set {0;} of limit points of {v}}:

m m
D aft; =0, where #;>0 and > #;=L1. (3.42)

i=1 i=1

Because #; = 0 if constraint 3 is inactive at =*, relation (3.42) states that a
nontrivial linear combination of the active constraint gradients at z* is zero,
which contradicts our assumption of their linear independence.

Finiteness of § implies that each component /\f is bounded for all k, and
consequently the sequence {\¥} has at least one accumulation point, say ;.
It follows from (3.39) and (3.40) that

g = AT

Because the rows of A are linearly independent, the values satisfying this
equation are unique, and we conclude that A; = X! for i € A, which com-
pletes the proof of (ii).

We now wish to demonstrate positive-definiteness of the barrier Hessian
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at . This property will be verified using the asymptotic structure of the
Hessian of the barrier function, which approaches the sum of the Hessian of
the Lagrangian function and a ‘large’ matrix in the range space of the active
constraint gradients.

Consider the ratio u, /(c¥)?, which we denote by d*:

P e _ N
df = = (3.43)

[}

When constraint i is active at z*, i.e. i € A, result (ii) and assumption
(b) of strict complementarity imply that A¥ converges to a strictly positive
constant. Since cf converges to zero for i € A, the final ratio in (3.43) is
clearly unbounded, and

= Pr_ _
hlgnmf d* hn_l’lol.}f (ck)2 =00 forie€ A (3.44)

Recall that the Hessian of the barrier function is given by
m m
VB(z,u) = H - Z—E H; +Z£2— a;ay.
=1 G i=1 i

Let H% denote V2B(zy, ). The limiting properties of this matrix are
revealed by expressing it in the following form:

HE = W* + M* + M} + M§ + M},

The first two matrices on the right-hand side depend on z* and a bounded
positive constant 7:

m
w* = H*-Y XH
=1
M* = 4y Z a; (a})T=~ATA.
icA
The remaining three matrices are expressed as perturbations involving x4,
*
z" and v:

m

ME o= HF-EY - (AR HE-3OAHY)
=1 =1

M = oY (e - a (@)

i€A
Mf = ) (dF —7)af(@)T+ Y dFaf(af)".
i€A igA

The matrix W* is the Hessian of the Lagrangian function at z*. For
sufficiently large k, the matrices M¥ and M¥ can be made arbitrarily small
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in norm; this statement follows from continuity of the problem functions,
convergence of zj to z*, convergence of Ax to A*, and boundedness of ~.
Because d* is unbounded above for i € A (see (3.44)), the quantity (d¥ —~)
is positive for sufficiently large k; hence the matrix M¥ is the sum of two
positive semi-definite matrices and must itself be positive semi-definite.

Positive-definiteness of H% will follow if the matrix W* +~yAT A is guaran-
teed to be positive definite for some constant . This property is shown by
examining the effect of the matrix in two orthogonal subspaces: the range
space of AT and the null space of A.

It is well known that any n-vector p may be uniquely expressed as the
sum of two orthogonal components,

D =Dpr+Pn,
where pp lies in the range space of AT and py lies in the null space of A.
Using this form, the product pT(W* + vAT A)p can be written as
Py Wy + 205 W*p, + pf W¥p, +vp} AT Ap,,. (3.45)

To ensure positive-definiteness, this quantity must be bounded below by a
positive number when p # 0. To develop the bound, we use a relation that
holds for any matrix C and vectors z and y:

zCy 2 ~||C| |iz|| llyll-

Assumption (c) guarantees the existence of a > 0 (the smallest eigenvalue
of the reduced Hessian of the Lagrangian; see (2.16)) such that

PR W¥py 2 allpy|®.
By definition, py is in the range of AT. Hence, if pp # 0, it holds that
Apn #0 and p£ AATA”R > [3”1’12”2

for some positive 8 (the square of the smallest nonzero singular value of A).

Let w denote ||W*||.
Applying these inequalities to (3.45), we obtain

pT(W* + AT A)p > allpw|? +18Ipxl? - 2wiipzll 1o~ = wipal?

If ||lpr|| = 0, so that p lies entirely in the null space of A, the expression on
the right-hand side is simply a|[px]|?, which must be positive. Otherwise, if
llpr]l # O, the right-hand side is guaranteed to be positive if y is bounded
below as follows:

w? + aw
Y B 3

We have shown that the Hessian of the barrier function at z; must be

positive definite for sufficiently large k, which is result (iii). The point z,

(3.46)
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is consequently an isolated unconstrained minimizer of B(z, u) (see (2.5)),
and is locally unique.

To verify the existence of a unique, differentiable function z(x) in a neigh-
bourhood of z(ui), we apply the implicit function theorem (see Ortega and
Rheinboldt (1970)) to the n + 1 variables (z, ). At (z, ux), we know from
(3.36) that the following system of nonlinear equations has a solution:

=1
o(z,u) = g(z) — “; @ ai().

The Jacobian of ® with respect to z is the barrier Hessian H X, which was just
shown to be positive definite at (&, k). The implicit function theorem then
implies that there is a locally unique, differentiable function z(u) passing
through z(u) such that ®(x, u) = 0 for all p in a neighbourhood of p.

Using continuation arguments, it is straightforward to show that the func-
tion z(u) exists for all 0 < u < py for sufficiently large k, which gives result
(iv).

The final result is immediate from the local uniqueness of z(u) and result
). O

We have now verified the existence of both the barrier trajectory x(u)
and the associated multiplier estimate A(u). A remaining question involves
existence and differentiability of the trajectory at z* itself. For sufficiently
small u, the following n 4+ m equations are satisfied identically at every pair
(z(u), A(s)) on the trajectory:

g(z) — A(@)TA = 0 (3.47a)
Aici(z) = p, i=1,...,m. (3.47Db)
If we treat the multipliers A(u1) as separate variables, (3.47) can be viewed as

a system of nonlinear equations in the n +m variables (z, ). The Jacobian
matrix of this system is given by

= ( H(w) - ThWH(W)  —AWT ) | 3.48)

A(p)A(p) C(u)

where A and C are diagonal matrices corresponding to A and c.

We can again apply the implicit function theorem to deduce the existence
of a differentiable trajectory (x(u), A(r)) at (z*, X*) if the matrix (3.48) is
nonsingular at u = 0. Let J* denote the limiting version of (3.48):

. W* —A*T
=\ xar o )

Nonsingularity of J* will follow if there is no nontrivial solution z to the
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system J*z = 0. Partitioning z into an n-vector u and an m-vector v and
using the form of J*, the condition J*z = 0 implies that

W*u—A*Ty =0 and A*A*u+C*v=0. (3.49)

If & > 0, we know that X} = 0, and the second equation in (3.49) then
implies that v; = 0 for all inactive constraints. If, on the other hand, c’f =0,
the same relation implies that A} (a})Tu = 0 for i € A. It follows that u must
lie in the null space of A, the Jacobian of the active constraint gradients.

Combining these properties, we see that
v;=0fori¢ A and (a})Tu=0 foric A (3.50)

If J*z = 0, the scalar 2TJ*z must also be zero. Writing out 27J*z in
terms of u and v, we have

2T J*2 = uTW*u — vTA*u + vTA* A*u + vTC*v = 0.

It follows from (3.50) that vTA*u = 0, vTA*A*u = 0, and v7C*v = 0.
Therefore, ul W*u = 0. But by assumption (c), this can be true only if
u=0.

If u = 0, the first equation in (3.49) implies that A*Tv = "™, a¥v; = 0.
Because the components of v corresponding to inactive constraints are zero,
it follows that that ;c 4 afv; = 0. Under assumption (d) that the active
constraint gradients are linearly independent, this can be true only if v; =0
for all i € .A. But in this case, © = 0 and v = 0, which means that z = 0.
Since J*z = 0 only for a zero vector z, J* is nonsingular. The implicit
function theorem applied to (3.47) thus implies that the trajectory z(u)
exists and is differentiable at z*.

The approach of the trajectory (i) to * can be analysed as follows. Let
& denote dz(u)/du, with a similar meaning for A. Differentiating (3.47) with
respect to u, we see that, for sufficiently small p, z(u) and A(u) satisfy the
system of differential equations

H-SMH, -AT\[(z) (o0
("E )2 e

with initial conditions z(0) = * and A(0) = X*.

Let y denote the vector & evaluated at 4 = 0, i.e., y is the tangent to
the barrier trajectory at £*. For an active constraint i, the second set of
equations in (3.51) reveals that

X(@)Ty=1, sothat (a})Ty= )‘—]; and Ay = (A*)e. (3.52)
i

The assumption of strict complementarity means that /\f # 0 for any ac-
tive constraint. Hence relation (3.52) shows that the barrier trajectory ap-
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proaches z* nontangentially with respect to the active constraints, i.e. the
iterates do not converge ‘along’ the boundary.

Assume that constraint 7 is active, and let 8; denote the angle between y
and the normal to constraint ¢ at z*. It follows from (3.52) that

cos6; ~ _1 (3.53)

lla X
If all active constraint gradients are approximately equal in norm, relation
(3.53) shows that the approach of barrier trajectory to * is ‘closer to tan-
gential’ for active constraints with larger multipliers.
These properties are illustrated graphically with a two-variable example:

minimize  2z172 — x% —~ 2
subject to % + x2 <2
:z:%x% <10
(z1- 3P+ (m2—-1)2< 4.
The first and third constraints (shown as dashed curves in Figure 3) inter-
sect at ¥ = (—1,1)7, which is an isolated local minimizer with Lagrange
multipliers X} = 3 and A5 = 1. The trajectory of barrier minimizers is
depicted as a solid line converging to z*. As expected, the trajectory ap-

proaches both active constraints along a nontangential path. The figure also
confirms the prediction of (3.53) concerning the relative angles of approach

to these constraints.

constraint 3
/

2 z(4)

Fig. 3. The nontangential approach of z(u) to z*.

The nontangential property fails to hold without strict complementarity,
even if the active constraint gradients are linearly independent. A complete
analysis of this case is given in Jittorntrum (1978).
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8.6. Properties of the barrier Hessian

The Hessian matrices Hp of the barrier function display a special structure
as u — 0. The barrier Hessian is given by

Hy(w)=H-Y -EH,- + pATC2A.

i=1

As z(p) converges to z*, the first two terms of the Hessian approach the

Hessian of the Lagrangian function at =*; the third matrix is given by

pATC-2A = ATD?A, where D?=puC~2=AC~!= %AZ. (3.54)
We have already shown that the elements of D corresponding to inactive
constraints are converging to zero, and the elements corresponding to active
constraints are becoming unbounded (see (3.44)).

Let 7 denote the number of active constraints whose gradients are linearly
independent. The Hessian of the barrier function can be characterized in
three ways, depending on 7.

If no constraints are active at z*, then the Hessian of the barrier function
converges (as we would expect) to the Hessian of f itself.

At the other extreme, suppose that 7 = n, so that the Jacobian of the
active constraints has rank n. If X* > 0, the barrier Hessian along the
trajectory approaches a large multiple of the nonsingular matrix AT(A¥)2A.
In this case, the condition of the limiting Hessian depends on the condition
of A and the condition of A*, but is not necessarily large. (This situation
holds for linear programs in which there are no zero Lagrange multipliers.)

Finally, assume that 0 < 72 < n. The limiting matrix D? then contains 77
unbounded elements and n — 1 zero elements, which means that asymptoti-
cally ATD?A of (3.54) becomes not only unbounded, but also rank-deficient.
Murray (1971) showed that Hz(u) has i unbounded eigenvalues, corre-
sponding to eigenvectors in the range space of AT, and n — 7 bounded
eigenvalues, corresponding to eigenvectors in the null space of A. The bar-
rier Hessian accordingly becomes increasingly ill-conditioned for ‘small’ u,
and is singular in the limit. This property is one of the reasons that barrier
function methods fell into disfavour in the 1970s, since standard uncon-
strained methods (such as Newton-based or quasi-Newton methods) tend to
experience numerical difficulties when the Hessian is ill-conditioned. Var-
ious linear algebraic approaches have been proposed for dealing with this
inherent ill-conditioning of the Hessian, and will be discussed in Section 7.2.

Our general analysis of barrier methods will be applied in Section 5 to the
special case of linear programming. As background, we briefly summarize
the relevant features of Newton’s method in Section 4.
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4. Newton’s method

The application of interior methods to linear programming is heavily based
on Newton’s method, which we review in this section. Newton’s method
enters because satisfaction of certain nonlinear equations is definitive in
optimality conditions (see Section 2.2), and the most popular technique for
solving nonlinear equations is Newton’s method.

4.1. Nonlinear equations and unconstrained minimization

We consider two forms for Newton’s method. First, let ®(z) denote an n-
vector of smooth scalar functions ;(z), i = 1,...,n, and let J(z) denote
the Jacobian matrix of ®. We seek a point z* where ®(z*) = 0. If z is the
current point and J(zy) is nonsingular, the Newton step py is the step from
Z, to the zero of the local affine model of ¥, and is the unique solution of
the linear system

Jipr = —®y, (4.1)

where J;, denotes J(zx) and @ denotes ®(xy).

The second form of Newton’s method is designed for unconstrained min-
imization of f(z). Here, a quadratic model of the local variation of f is
obtained from the Taylor-series expansion about xg:

f(ax +p) — f(zx) = 9fp+ 3p"Hap,
where g = g(xx) and Hy = H(zy). If Hy is positive definite, the Newton
step p;. is the step from z; to the minimizer of this model, and satisfies the
nonsingular linear system

Hip = —gy. (4.2)

The direction pj of (4.2), derived for minimization, is equivalent to the
Newton step for solving the n-dimensional nonlinear system g(z) = 0.

4.2. Local convergence

A pure Newton method for either zero-finding or minimization begins with
an initial point z¢, and generates a sequence of Newton iterates {z}, where

Tkl = Tk + Pk (4.3)

and p;, is defined by (4.1) or (4.2). Newton’s method is often regarded as
an ‘ideal’, in large part because of its fast quadratic convergence. When
z is sufficiently close to the solution and the relevant matrix (Jacobian or
Hessian) is nonsingular, the error after each pure Newton step is effectively
squared:

lzk+1 — 2" = O(llex — 2*|1%).
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Far from the solution, a pure Newton method is unreliable and may fail to
converge. The standard way to encourage convergence from a general start-
ing point is to require a reduction at each iteration in some merit function
that measures progress. The new iterate is then defined by

Tk41 = Tk + QxPk, (44)

where oy, is a positive scalar called the step length.

To guarantee convergence, the step o, must satisfy conditions known as
sufficient decrease in ||®|| or f, as appropriate. The process of choosing
oy to produce a sufficient decrease in F is called a line search. Standard
sufficient decrease conditions are discussed in detail in, for example, Ortega
and Rheinboldt (1970). For well-behaved problems, the ultimate quadratic
convergence of Newton’s method can be retained because the ‘natural’ step
of unity (o =1 in (4.4)) asymptotically produces a sufficient decrease.

4.8. Linear equality constraints

Newton’s method for minimizing f(z) subject to linear equality constraints
can be derived in two ways: solving the nonlinear equations associated with
optimality, or solving the constrained minimization subproblem derived from
the local quadratic model.

The optimal z* and multiplier A* can be viewed as the solution of the
system (2.9) of n + m nonlinear equations in the variables (z,)). Given
zr and \g, we substitute the Jacobian from (2.9) into the generic Newton
equation (4.1), which leads to two equivalent linear systems satisfied by the
Newton step (pg, 6k):

H, -AT\ (px _ [ Hk AT Pe) _ —gk + AT (4.5)
A 0 J\&) \A 0)\-&) \ b—Azn )’ '

(The second form has been rewritten with —6; as an unknown so that the
matrix is symmetric.) The matrices in (4.5) are nonsingular whenever A has
full rank and the reduced Hessian NTH. N is positive definite. Another op-
tion is to treat the ‘new’ Lagrange multiplier Ax 1 = Ag + ;. as an unknown,
producing the linear system

Hp AT Pk ) —9k
( A 0 )(-,\Hl)‘(b-mk)’ (46)

The form (4.6) is often called the augmented system; the symmetric indefinite
matrix in (4.6) is sometimes called the KKT matriz.

Viewed from a minimization perspective, the Newton step p; is chosen
to minimize the Taylor-series quadratic model of f subject to satisfying
the constraints Azi,; = b. With this formulation, p; solves the quadratic
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program

min&iinize % THip+ gip subject to Ap =b— Azy. 4.7
p "

This subproblem is itself an optimization problem subject to linear equality
constraints. The Newton iterate =4 + pj, satisfies the conditions (2.7a-b) for
optimality of (4.7) if

Apr =b— Azy and g + Hipr = AT A1 (4.8)

After rearrangement, we again obtain the same linear system (4.6).

If z;, already satisfies the linear constraints, so that Az, = b, the Newton
step is constrained to lie in the null space of A. In this case, the first equation
in (4.8) becomes Apy = 0. If H}, is nonsingular, we may multiply the second
equation by AH, ! and use the fact that Ap; = 0, yielding the equations

AH'ATN,, = AH'g;
pe = H'ATA, - H.'g,.

5. Linear programming

The main focus of interior methods since 1984 has been on linear program-
ming. Much of the work on interior methods for LP can be viewed as an
application of the general theory for barrier functions (Section 3), with enor-
mous simplifications arising from the special properties of linear programs.
Before describing specific interior methods, we give the relevant background
on LP, emphasizing the special structure that is relevant to barrier methods.

It should be stressed in advance that hundreds of papers have been and
continue to be written about interior LP methods, so that preparation of a
complete list of references would be a daunting task. Fortunately, the ex-
cellent survey article of Gonzaga (1992) contains an extensive bibliography
covering most aspects of the subject through mid-1991. A general bibliog-
raphy on interior methods has been compiled by Kranich (1991), and can
be accessed via electronic mail.

5.1. Background

For various historical and computational reasons, linear programs are widely
stated in so-called standard form:

minignize Tz subject to Az =b, >0, (6.1)
where A is m x n. The nonnegativity bound constraints > 0 are the only
inequalities in a standard-form problem. It is customary to assume that the
rows of A are linearly independent. The point z is called strictly feasible for
the linear program (5.1) if Az =b and z > 0.
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A standard-form LP is a convex program (see Definition 10), and first-
order conditions are sufficient for optimality. Combining results for linear
equalities and general inequalities, we see that the feasible point z* is a
minimizer of the standard-form LP (5.1) if and only if, for some m-vector
y* and n-vector z*,

c=ATy* +25, >0, and zta:’:=0 fori=1,...,n.

The vector z* is the Lagrange multiplier for the inequality (simple bound)
constraints, and y* is the Lagrange multiplier for the equality constraints.
We note that z* and z* satisfy a complementarity relation (see (2.13c));
because of the special nature of standard form, the values of the variables
{z:} are also the values of the inequality constraints.

A well known property of linear programs is that, if the optimal objective
value is finite, a vertez minimizer must exist. For a standard-form LP, a
point =* > 0 satisfying Az* = b is a vertex if at least n — m components of
z* are zero. At a nondegenerate vertex :z:*, exactly n — m components are
zero. For details about linear programming and its terminology, see, e.g.,
Chviétal (1983) or Goldfarb and Todd (1989).

The LP (5.1) is traditionally called the primal problem. Its dual may be
written in the inequality form

max%mize bTy subjectto ATy <c, (5.2)
or in standard form:
mm;irznize bTy subjectto ATy+z=¢, z2>0. (5.3)

The vector z in (5.3) is called the dual slack. The solution y* of the dual is
the Lagrange multiplier for the m general equality constraints in the primal,
and the primal solution z* is the Lagrange multiplier for the n equality
constraints of the standard-form dual problem (5.3).

The termination criteria in many interior LP methods are based on an
important relationship between the primal and dual objective functions. Let
z be any primal-feasible point (satisfying Az = b, ¢ > 0) and y any dual-
feasible point (satisfying ATy < c), with z the dual slack vector ¢ — ATy. It
is straightforward to show that

Te — b7y =272 > 0. (5.4)

The necessarily nonnegative quantity cTz — bTy is called the duality gap, and
is zero if and only if x and y are optimal for the primal and dual.

Given a primal-feasible z and a dual-feasible y, the duality gap also pro-
vides a computable bound on the closen%s of ¢Tz to the optimal value cTz*.
Assume that ¢’z — bTy = 8. Since eTz* = bTy*,

dz - =p+by - bTy*.
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Because the dua.l objective is maximized by y* for all dual-feasible y, we
know that 57y* > by, which means that bTy — bTy* < 0. Similarly, because
the primal obJectlve is minimized among all prlmal fea31ble z, cTx—cTz* > 0.
Hence a duality gap of 3 at (z,y) implies

0<clz—cTa* < . (5.5)

5.2. The central path

Suppose that we wish to apply a barrier method to a standard-form LP for
which the following assumptions are satisfied:

(a) the set of x satisfying Az =b, z > 0, is nonempty;
(b) the set (y, z) sat1sfymg ATy + z = ¢, 2 > 0, is nonempty;
(c) rank(A) =

Because the inequality constraints in a standard-form problem are ex-
clusively s1mple bounds, the corresponding logarithmic barrier function is
B(z,u) = ¢’z — p Y, Inz;. The barrier subproblem involves minimizing
B(z, p) subject to satisfying the linear equality constraints:

n
minimize ¢’z — p Z Inz; subjectto Az =5b. (5.6)
i=1
The gradient and Hessian of B(z, 1) for this case have particularly simple
forms:
VB(z,p) =c—pXle, V2B(z,p)=pX2, (5.7)
where X = diag(z;).

The barrier subproblem (5.6) has a unique minimizer if assumption (b) is
satisfied, i.e. there exist points that are strictly feasible for the dual problem.
(This result can be deduced from the special nature of linear programs and
Theorem 4.) The optimality conditions (2.7) for linear equality constraints
imply the existence of y such that the solution of (5.6) satisfies

c—puXle=ATy or c=ATy+puXle
Defining z = uX ~le, we may write
c=ATy+2z and Xz=pe.
These equations are reminiscent of the equations (3.47) that hold along
the barrier trajectory, since c is the objective gradient and the variables z

are also the inequality constraints. The central path for a standard-form LP
is defined by the vectors z(u), y(u) and z(u) satisfying

Az = b, >0 (5.8a)
Aly+z = ¢, 2>0 (5.8b)
Xz = pe. (5.8¢c)
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The central path plays a crucial role in many interior LP methods; see
Gonzaga (1992) for a detailed survey of methods based on the central path.
We stress that relation (5.8¢c) formally defines the concept of ‘centering’ z
and z, namely using the barrier parameter to control the distance of both
vectors from zero (the boundary). Furthermore, the objective value along
the path provides an estimate of the deviation from optimality; see (3.26).

5.3. The primal Newton barrier method

Assume that we are given a point z satisfying Az = band = > 0, and that we
wish to apply a barrier method to solve the standard-form LP (5.1). Using
the forms (5.7) for the barrier gradient and Hessian, the Newton subproblem
(4.7) for (5.6) is

minignize % up"X " 2p+ c'p— ppTX le subject to Ap=0. (5.9)

The first-order optimality criteria of (2.7) applied to (5.9) show that the
Newton direction p must satisfy

pX 2p+c—pXle= ATy (5.10)

for some Lagrange multiplier vector y. (We use y rather than A for the
Lagrange multiplier to retain consistency with LP notation.) Multiplying
through by X2 and noting that Xe = z, we obtain two expressions for p:

p = ‘—ILXz(ATy —c+pXle) (5.11a)

p = z+ iX2(ATy—c). (5.11b)

An expression for the Lagrange multiplier y is derived by multiplying
(5.10) by AX? and using the relation Ap = 0 to eliminate p:

AX2ATy = AX%c — pAXe = AX(Xc — pe). (5.12)

Because A has full rank and z # 0, the matrix AX2AT is positive definite.

Equation (5.12) has the familiar form of the normal equations for a lin-
ear least-squares problem with coefficient matrix XAT. The vector y can
therefore equivalently be represented as the solution of

minimize | XATy — (Xc — pe)||2. (5.13)

The residual vector corresponding to (5.13) is given by r = X ATy—(Xc—pe).
Applying (5.11a), we see that the Newton direction p satisfies

1
p= —X'I',
M

and is a diagonally scaled multiple of the least-squares residual.
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Alternatively, we can think of p and y as forming a combined vector
of dimension n + m that solves the linear equations corresponding to the
augmented system (4.6) for (5.9):

puX-?2 AT p\ [ —c+tpXle
(T T)(2)- (78 ) e

Since by construction Ap = 0, it follows that A(z + ap) = b for any step
o along p whenever Az = b. The pure Newton iterate for this problem (see
(4.3)) is £ = z + p; however, a step of unity may violate strict feasibility.
Because the constraints are linear, strict feasibility is retained if the step
taken along p is less than the step & to the boundary of the feasible region.
With simple bound constraints, & can be calculated directly: for all indices
t such that p; < 0, & is the smallest value of —z;/p;.

A model primal Newton barrier algorithm includes both ‘outer’ and ‘inner’
iterations. The outer iterations reduce the barrier parameter, and the inner
iterations apply Newton’s method to solve the current barrier subproblem
(5.6).

Primal Newton Barrier Algorithm
k — 0; po > 0; zq satisfies Azg = b and ¢ > 0;
while z;, is not sufficiently close to optimal for the LP do
1 — x50 0;
while zi is not sufficiently close to optimal for (5.6) do
Calculate the Newton direction p at zi;
it — 2t + o'pf, where o < & and B(zit!, u,) < B(zi, up);
1—1+1;
end while
Tpp1  Thi
Choose pg41 < pr; kK — k+1;
end while

The major computational effort associated with a primal barrier algo-
rithm is the calculation of the Newton direction. The equations satisfied by
the Newton direction can be written in a variety of theoretically equivalent
forms, each of which suggests different linear algebraic techniques; the linear
algebra issues will be discussed in Section 7.1.

The unspecified, implementation-dependent aspects of this algorithm in-
clude the selection of z¢ and pg, the strategy for altering the barrier parame-
ter, and the choice of termination criteria for the inner and outer iterations.
With suitable modification, this algorithm does not necessarily require a
strictly feasible point. See Gonzaga (1992) for references on approaches
that allow a general starting point.

With respect to the choice of the step «, it has been universally observed
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in practice that a very simple line search strategy of choosing « as a fixed
fraction close to one (say, 0.95 or 0.99) of the step & to the boundary almost
always produces an adequate sufficient decrease (see Section 4.2) in the
barrier function. In the extremely rare cases when this step is inadequate,
a standard backtracking line search may be used. (For nonlinear problems,
the issue of the line search becomes more complicated; see Murray and
Wright (1991).)

Affine scaling interior methods were originally derived in terms of scaled
steepest descent, and at first sight appear unrelated to barrier functions.
However, the primal affine scaling method corresponds to defining y from
(5.12) with p = 0. In general, an affine scaling method may be viewed as the
limiting case of Newton’s method applied to a barrier function. Gonzaga
(1992) discusses the history of affine scaling methods.

In the first few years following 1984, affine scaling techniques experienced
considerable popularity, in large part because of their simplicity, and were
among the most effective in practice. At present, primal-dual methods, to
be discussed in the next section, are accepted as the most efficient interior
methods for LP. Certainly they are the most widely implemented in major
software packages.

5.4. Primal-dual barrier methods

The primal Newton barrier algorithm just described finds a Newton step
in only the primal variables z; the Lagrange multiplier y arises from the
equality-constrained Newton subproblem (5.9). An alternative approach is
motivated by finding primal and dual variables z, y, and z that satisfy the
(rearranged) nonlinear equations from (5.8) that define the central path:

XZe— pe
&(z,y,2) = Az —b =0. (5.15)
ATy+z-c¢

Note that the second and third equations are linear; all the nonlinearity
occurs in the first equation.
Applying Newton’s method (4.1) to this system, we obtain

Pz Z 0 X Pr pe — XZe
Jl oy, |=]1 A 0 O Py | = b— Az , (5.16)
Pz 0 AT 1 P c—-ATy—z2

where J is the Jacobian of ® in (5.15) and p;, py and p. are the Newton
directions for z, y and z. Despite the difference in derivation, the linear
systems associated with the Newton step in a primal-dual method have the
same character as those in a primal method.
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The third equation in (5.16) gives the expression
p,=—ATp,+c— ATy — 2.

Substituting in the first equation to eliminate p,, we obtain an augmented
system involving p, and p,:

(X"1Z AT) ( Pz )=<uX"le—c+ATy) (5.17)
A 0 —Dy b- Az
(see (4.6)). Since both z and z are strictly positive, the matrix X ~!Z may
be written as a positive diagonal matrix D?, with d? = z;/z;.
Using X ~1Z as a block pivot to eliminate p, from the second equation of
(5.17), the result is

AZIXATp, = AZ7 X (c— pXle~ ATy) + b — Az. (5.18)

As in (5.12), the matrix is symmetric and positive definite, with the form
AD?AT. Once p, is known, p, and p, may be calculated without solving
further equations.

Finally, if b — Az may be written as ADv for some vector v (for example,
if Az =b), the equations (5.18) are the normal equations for a linear least-
squares problem with matrix DAT; see (5.13).

Primal-dual algorithms typically have a form similar to the primal algo-
rithm given in Section 5.3. Most implementations choose separate steps for
the primal and dual variables, in each case to ensure a sufficient decrease
in some suitable merit function. When z and z are respectively primal-
and dual-feasible, the easily-computable duality gap provides a guaranteed
measure of the deviation from the optimal objective value; see (5.5).

Primal-dual methods of several varieties have been implemented, many
with great practical success. An important feature not discussed here is
the use of a ‘predictor—corrector’ technique closely related to extrapolation
along the trajectory. For detailed discussion of primal-dual methods, see,
for example, Lustig et al. (1990) and Mehrotra (1990).

6. Complexity issues

It is interesting as well as ironic that interior methods possess the same
property as the simplex method: they are much faster in practice than
indicated by complexity analysis. As we shall see, the typical upper bound
on the number of iterations required by an interior method is extremely
large for a problem of even moderate size. However, a lighthearted ‘rule
of thumb’ articulated by several implementors is that interior LP methods
tend to converge in an effectively constant number of iterations for many
problems. This discrepancy has yet to be explained rigorously.

A major reason for the widespread interest in interior methods has been
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their provable polynomial complexity. Although formal complexity proofs
are not typical in the numerical analysis literature, we have included one to
indicate its flavour.

6.1. The role of problem size

In complexity proofs, it is standard to assume that ezact arithmetic is used,
and that all data of the problem (i.e. the entries of A, b and ¢) are integers.
This is equivalent to assuming that the problem data are rational, since
rational values can be rescaled to become integers. We therefore assume, in
discussions of complexity only, that the entries of A, b and c are integers.

For a standard-form LP with n variables and m general constraints, the
worst-case complexity of the simplex method depends on the number of ver-
tices of the feasible region (which provides an upper bound on the number
of iterations) and on the number of arithmetic operations required to per-
form an iteration. Both of these numbers can be bounded by expressions
involving only the dimensions n and m.

When analysing the complexity of interior methods, however, a ‘new’ inte-
ger L makes an appearance. The usual interpretation is that L measures the
‘size’ of a linear program, and indicates the amount of information needed
to represent an encoding of the problem.

The exact definition of L varies somewhat in the literature. For example,
in Goldfarb and Todd (1989), the value of L for a standard-form LP with n
variables and m equality constraints is defined as

L=§:i]’log([aij|+l)+l], (6.1)

=0 j=0

where a;o = b; and ag; = ¢;. It should be stressed that L can be enormous
for problems of even moderate dimension.

The value of L enters the complexity analysis at both lower (termination)
and upper (initialization) extremes. The role of L in the initialization of
interior methods will be discussed following Theorem 9.

With respect to termination, Khachian (1979) showed that the smallest
possible nonzero variation in the objective function between any two distinct
vertices is expressible in terms of L. In particular, if z is any vertex, then ¢’z
is either equal to the optimal value c¢’r* or must exceed the optimal value
by at least 272L. This bound depends on the fact that an optimal vertex
is the solution of a linear system involving b and a nonsingular submatrix
of A. Under an integrality assumption on the entries of A and b, Cramer’s
rule shows that the exact solution of such a system is a vector of rational
numbers, such that the absolute value and denominator of each component
are bounded by 20,

A stopping rule that defines acceptable closeness to optimality is needed
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for interior methods because the exact solution of an LP (a vertex) cannot be
produced in a finite number of iterations by a method that generates strictly
feasible iterates. Given any feasible point z, a formal ‘rounding’ procedure
requiring O(n3) operations is known that will produce a vertex Z for which
cTE < cTz. If the objective value at an interior point is known to be within
272L of the optimal value, a single application of the rounding procedure
will produce an optimal vertex. This result follows from the property stated
above concerning the minimum nonzero variation in objective values between
vertices; see Papadimitriou and Steiglitz (1982) and Gonzaga (1992) for
details.

Although the optimal objective value is in general unknown, an interior
method that constructs primal- and dual-feasible points can use the duality
gap to provide a computable upper bound on the difference between the
current and optimal objective values; see (5.5).

6.2. A polynomial-time path-following algorithm

The material in this section closely follows Roos and Vial (1988); similar
proofs are given in Monteiro and Adler (1989a). See Gonzaga (1992) for a
survey of path-following strategies and the associated complexity bounds.

The argument typifies complexity proofs involving Newton steps and the
central path. The fundamental ideas are: first, defining a computable mea-
sure of closeness to the central path; second, showing that a Newton step
retains a sufficient degree of closeness to the path; and finally, decreasing
the barrier parameter at a rate that allows a polynomial upper bound on the
number of iterations required to reduce the duality gap to less than 2~0(),

An important element of the proof is a suitable definition of a prozimity
measure 6(z, ), which measures closeness to the central path. This quantity
is defined for a strictly feasible z and positive barrier parameter u. Let
y(z,p) and z(z, ) denote the vectors satisfying ATy + z = ¢ for which
| Xz — pe|| is minimized. This requirement means that y(z, u) and z(z, u)
solve an optimization problem with a quadratic objective function and linear
equality constraints:

min!/ifzrlize 12TX%2 - pz’z suchthat ATy+z=c (6.2)

Problem (6.2) is merely a conceptual formalism; the required vectors are
implicit in the calculations (5.11) and (5.12) associated with the primal
Newton direction:

y(r,p) =y and z(z,p) =c— ATy
The projected Newton direction p (5.11) may consequently be written as

p=z— %X“’z, (6.3)
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where 2z is the optimal z(u) from (6.2).
The proximity measure §(z, ) is defined as

_ X
o(z,) = 1X ol = |

z
——e
7
If z solves (5.6), i.e. = lies on the central path, then é(z, u) = 0. The value
of 6 is thus a scaled measure of the Newton step, and indicates the distance
of z from the central path.
It is convenient to use the n-vector s whose ith component is s; = z;z;/u,
so that

, where 2z=z(z,u). (6.4)

s = % and z=pXls. (6.5)
The definitions of § and s imply the relations
n iz 2 n
=3 - 1) =ls—el®=>(s:i — 1) (6.6)
i=1 i=1

It follows from (6.3) and (6.5) that the next iterate Z of a pure Newton

method is
2

f=a:+p=2:c—£pf=2x—Xs. (6.7)

Component-wise, the new iterate satisfies
T; = 2% — T;8; = (2 - s,')xi. (6.8)

Before treating the algorithm itself, we show that the duality gap is
bounded if the proximity measure is sufficiently small.

Lemma 2 (Bounds on the duality gap.) If z is strictly feasible, §(z, u) < 1
and the vectors y and z solve (6.2), then y is dual-feasible (i.e., ATy < ¢)
and

,u(n—&(z,u)\/'r_z) < dr-bly < u(n+6(w,u)\/ﬁ).

Proof. Since z > 0 and 6(z,u) < 1, it follows from the first equation in
(6.6) that z;z; > 0. Hence z > 0, which means that ATy < candyis
dual-feasible.

Because z and y are primal- and dual-feasible, we know from (5.4) that
the duality gap is given by T2, with z = ¢ — ATy. By definition of § and e,

Xz
@ mvi= | 2L = e| el
Applying the Cauchy-Schwarz inequality, we obtain
Xz Xz Tz
8z, =”——e eZeT——e'=——n,
(e, vi = |5 = elllel 2 |7 (57 = ¢)| = |5,
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which leads to

(IITZ

n—&(z, p)vn < o < n+6(z,pu)Vn.

Multiplying by g gives the desired result. O

We now begin a sequence of lemmas that prove crucial relationships about
Newton steps and the proximity measure. First, we show that, if the prox-
imity measure is sufficiently small for given z and u, the proximity measure
for the same value of u is squared at the next Newton iterate.

Lemma 3 (Quadratic convergence of proximity measure.) Let z satisfy
Az = b, £ > 0, and assume that §(z, ) < 1. Then the next Newton iterate
 (6.7) also satisfies AZ = b and £ > 0. Further, 6(z, u) < 6(z, u)2.

Proof. Because é(z,u) < 1, it follows from (6.6) that |s; — 1| < 1, so that
0 < s8; < 2for 1 <1< n. Relation (6.8) then implies that £ > 0. The fact
that AZ = b is immediate from the construction (5.9) of p to satisfy Ap = 0.

Because §(Z, 4) is the smallest value of | Xz/u — e| for all vectors y and
z satisfying ATy + z = ¢, we have

Xz
s <X -
(T, 1) m

Using the relations z = uX ~1s and #; = 2z; — z;s; gives
%‘3 =XX1s=(2X - X8)X s =25 S%.
Therefore, 6(z, u) < ||2s — S%e — ¢||, which means that

n n n 2
8@, < Y (2= of =12 = (o= D' < (L= 1) = 6@ ).
i=1 i=1 i=1
The condition 6(x, 1) < 1 thus ensures that the pure Newton iterates con-
verge quadratically to the point z(x) on the central path. O

The next lemma develops a bound on the proximity criterion correspond-
ing to a reduced value of the barrier parameter.

Lemma 4 (Effect of a reduction in x.) If 0 satisfies 0 < 8 < 1 and 2 is
defined as (1 — ), then

5(3;”&) < w

1-0
Proof. 1t follows from the definition of § that, for 2z = z(z, u),

8(z, ) < j

- — €fl.
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Let
__1 _&r
T1Toe T p
sothat v>1and v —1=6/(1 —@). Then
Xz Xz
6(z, o SI——_——e = llv— —€e|| = llvs — €.
(z, ) 7 m I |

Applying the triangle inequality gives
6(z,m) < lv(s—e)+(v—1)e]
< vis—ell + (v =1)]ell

6(z,p) +6v/n
1-6

which is the desired result. O

We now combine the preceding two lemmas to obtain a bound on the
proximity measure for the Newton iterate with a barrier parameter that has
been reduced by a factor related to the problem dimension.

Lemma 5 (Bounds on the proximity measure.) Assume that §(z,u) < 1,
and let

1
é—ﬁ, so that 6v/n = 5
When £ is the Newton iterate (6.7) and g = (1 — 0)y, then 6(Z, z) < 3.
Proof. Applying first Lemma 4 and then Lemma 3, we have

5(2,) +0v/7 _ 8(z, )2 +6v/E

T, ) <
b@p) = 1-6 -~ 1-9
1 1 5
...+_ o
< 4 6= 12
= 1-6 1-6
< i

where the last inequality holds because 1/(1 —6) < §. O

An approximate path-following method based on reducing the barrier pa-
rameter and taking a single Newton step is obviously suggested by these
results. Assume that we are given a strictly feasible z( and barrier parame-
ter pg such that 6(zg, uo) < %; the latter condition can always be satisfied,
as we shall discuss after the proof of Theorem 9. The following algorithm
constructs a sequence of pairs (z, ux) such that every zy is strictly feasible,
i >0, 6(zg, pi) < %, and pr — 0 as k — oo.

Let g be an accuracy parameter, to be described later, and define 8 as

1/(6v/n).
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Algorithm I
k0
while ny; > e™?
Pt — (1 — O pi;
Tpyy — 28, — XP2/ 1y, Where zx = 2(zk, pi) of (6.2);
ke—k+1;
end while

An upper bound for the number of iterations required by Algorithm I is
given in the following theorem.

Theorem 9 (Worst-case number of iterations.) Define go = [In(npop)].
Then Algorithm I will terminate after at most 6(g + go)/n steps, and the
final iterate z and the corresponding y obtained from (6.2) satisfy

Iz — bTy < g e 9.
Proof. We know from Lemma 3 that every iterate zj is strictly feasible,
and from Lemma 5 that §(z, ux) < % The algorithm terminates when k&
satisfies nuy < e~9, where by construction px = (1 — 8)*ug. Applying the
definition of g, termination will occur when
npr = n(l —0)*pug < (1 - @)ke® <e9.
Taking logarithms, the termination condition is
-k In(1-6) > q+qo. (6.9)

Since —In(1 — @) > 6 for all § < 1, the inequality (6.9) holds if k8 > q + qo.
Using the definition of 8, we see that the algorithm terminates if &k satisfies

k> 6\/ﬁ(q + (IO),

which gives the first desired result.
For the final iterate zx, let yx = y(zk, ur). Lemma 2 implies that yj is
dual feasible and that

Ty — by < (n + &(zk, uk)\/ﬁ)-

Since nuy < e ? and 8(xk, pr) < %, rearrangement gives

<§e"q

5(wk,uk))
——=) <3¢

/n

Ty — by < e‘q(l +

which completes the proof. O

To conclude that this bound is polynomial, we need to connect L (6.1) to
both the initial barrier parameter po (which defines ¢g) and to the accuracy
parameter q.

The value of ug is related to L in detailed proofs by Monteiro and Adler
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(1989a, b), who show that any LP is polynomially equivalent (i.e. can be
transformed in a polynomial number of operations) to an LP of similar size.
For this related LP, a strictly feasible z and an initial pg = 202 are known
such that z( lies on the central path. With these choices of i and zy, the
value of gp is O(L), and 6(zg, o) = 0. It should be emphasized that this
value of pg is enormous, and would never be used in a practical algorithm.

Turning now to the accuracy parameter ¢, we know from our initial dis-
cussion of L that the algorithm should terminate when the duality gap is
less than 2=9(1), In Algorithm I, the duality gap is tested against e~9. Con-
sequently, ¢ should be chosen as O(L) to ensure that the rounding procedure
will produce an optimal vertex from the final iterate.

With both ¢ and g taken as O(L), the bound of Theorem 9 is indeed
O(+/nL) iterations. Finally, each iteration of the algorithm requires O(n3)
operations, to calculate p, y and z from (5.11) and (5.12). The total compu-
tational effort for Algorithm I is therefore O(n35L), which is (as promised)
a polynomial in the problem size.

Polynomiality has been proved for a wide variety of interior methods for
linear and quadratic programming. See, for example, Monteiro and Adler
(1989b), in which the nature of the ‘rounding’ required for QP is described in
detail. Various authors have proposed interior path-following methods for
convex nonlinear problems satisfying certain assumptions. Recent discus-
sion of these approaches is given in, for example, Nesterov and Nemirovsky
(1989), den Hertog et al. (1990), Mehrotra and Sun (1990), and Jarre (1991).
With these methods, polynomial bounds can be proved only on the num-
ber of iterations, since no rounding procedure exists for general nonlinear
problems.

7. Linear algebraic issues

A persuasive argument can be made that the practical success of interior
methods depends on numerical linear algebra. For very large problems,
even (say) 40 iterations of an interior method would be inordinately time-
consuming if the associated linear systems could not be solved efficiently
and reliably.

7.1. Linear algebra in interior LP methods

The linear systems in interior methods for linear programming have a strik-
ingly different nature from those associated with the simplex method. At
each simplex iteration, two (transposed) square m x m systems are solved,
and the matrix changes by only a single column per iteration. Typical imple-
mentations of the simplex method perform an initial sparse LU factorization
of the basis, followed by Forrest—Tomlin or Bartels-Golub updates. As an
aside, we stress that linear algebra in the ‘real’ simplex method bears almost
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no resemblance to a typical textbook tableau. Recent discussions of selected
linear algebraic issues in the simplex method may be found in Bixby (1990),
Duff et al. (1986) and Forrest and Tomlin (1990, 1991).

Interior LP methods have been of practical interest mainly for large prob-
lems, and we henceforth assume that the matrix A is large and sparse.
In most implementations to date, the Newton direction is calculated from
equations arising in two theoretically equivalent formulations:

(i) Normal-equation form, involving an m x m symmetric positive-definite
matrix AD?AT (see (5.12) and (5.18));

(ii) Augmented system form, containing an (n + m)-dimensional specially-
structured symmetric indefinite matrix (see (5.14) and (5.17)).

Least-squares problems such as (5.13) have primarily been solved by conver-
sion to (i) or (ii), although some interest remains in application of sparse QR
factorizations. A complete discussion of the relevant linear algebraic issues
for all these approaches is given in Bjorck (1991), along with an extensive
bibliography.

With either (i) or (ii), the following features are important:

e The n x n matrix D changes completely at every iteration, but its
elements are converging to quantities associated with z*;

e  The Newton direction need not necessarily be computed with high ac-
curacy, since it is only a means to follow the path. Unless there is a
complete breakdown in accuracy, the line search ensures progress for
any direction of descent with respect to the particular merit function.

The simplest and by far the most popular linear algebraic technique for
the normal-equation approach is direct solution: we explicitly form AD2AT
and compute its Cholesky factorization,

AD?AT = RTR,

where R is upper triangular. Sparse Cholesky factorizations have been
widely studied and carefully implemented in several sparse matrix pack-
ages. Comprehensive discussions are given in, for example, George and Liu
(1981) and Duff et al. (1986).

Most implementations of a sparse Cholesky factorization perform an ini-
tial symbolic analyse phase that constructs a pivot ordering intended to
produce a sparse factor R. When AD2AT is sufficiently positive definite,
all pivoting orders are numerically stable, so that the ordering need not be
altered later. Because only the diagonal scaling D changes at each iteration
of an interior LP method, a single analyse phase suffices for all iterations.
After a suitable ordering is determined, the triangular matrix R is calculated
using the numerical values in AD?AT.

Standard ordering heuristics, most commonly minimum degree and mini-
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mum local fill, have been very effective in interior methods. The calculation
of R has been organized in both ‘left-looking’ and ‘right-looking’ versions.
The best choice of ordering and organization has been found, not surpris-
ingly, to depend on details of the hardware such as vectorization and memory
hierarchy.

Although the barrier Hessian is nonsingular at strictly interior iterates, it
becomes asymptotically singular when the linear program is dual degenerate.
Many (some would say most) real linear programs display a high degree of
dual degeneracy, leading to obvious ill-conditioning in AD2AT. The small
number of observed numerical difficulties with the normal-equation approach
has therefore been a continuing surprise. A careful error analysis is likely to
explain this phenomenon, but it remains slightly mysterious at this time.

The major practical difficulty with forming the Cholesky factorization
of AD?AT is known as the ‘dense column’ problem. If any columns of A
contain a relatively large number of nonzeros, the matrix AD2AT is much
denser than A. (If A has even one entirely dense column, AD2AT fills in
completely.) To retain efficiency, some strategy must be developed to detect
and treat dense columns separately.

Suppose that A is partitioned into two subsets of columns, with a similar
partition of D:

A= (A; Ay), sothat AD?AT= A, D?AT+ A,DZAL

where A contains the dense columns. The hope is to solve systems involving
AD?AT without forming the matrix explicitly, using a Cholesky factoriza-
tion of the ‘sparse part’:

A, D3?AT = RYR,.

A direct strategy can be devised by observing that the solution p of
AD?ATp = d also satisfies

ADIAT A p\ _(d
(M ) (2)-(5) o

It is well known that the extended system (7.1) can be solved if we can solve
linear systems involving A; D?AT and the (negative) Schur complement

C = D;? + AT(A,D?AT)14,.
The matrix C can be expressed in terms of Ry as
C = D;*+ AT (RTR,)™'4, = D;* + UV,
where U = R7T A,. The desired vector p is found by solving (in order)
R’{v =d, Cz=U, Rip=v—-Ux.

If the column dimension of A, is small, the positive-definite matrix C can
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be formed and factorized without undue effort. This technique for dealing
with dense columns is discussed in, for example, Marxen (1989) and Choi et
al. (1990).

A second approach involves applying an iterative technique such as the
conjugate gradient method. Given that the equations need not be solved ex-
actly, there is some hope that the required number of iterative steps will not
be too large on average. Because AD2AT is often ill-conditioned, precondi-
tioning is essential. An obvious source for the preconditioner is a ‘sparsified’
Cholesky factorization of AD? A7, such as the factorization of A; D?A7; see,
for example, Gill et al. (1986). Other strategies combining direct and itera~
tive techniques have also been devised; see Lustig et al. (1990).

A drawback with either strategy is that the matrix A;D?AT remaining
after removal of dense columns has frequently been found to be extremely
ill-conditioned or even numerically singular. A second problematic aspect is
that heuristic criteria must be developed to identify which columns qualify
as dense.

We now turn to formulation (ii) — solving an augmented system in which
the matrix has one of the forms

D=2 AT BI DAT
K= M= - . .
( A 0 ) o ( AD 0 ) (7.2)

The second matrix arises from a least-squares formulation, and the scalar 8
is a scaling factor included to improve stability. Its selection is a compromise
between preserving sparsity and maintaining stability; see Arioli et al. (1989)
and Bjorck (1991).

Both K and M are symmetric but obviously indefinite. (We shall refer to
K in the discussion, but most comments apply also to M.) The standard
direct method for solving systems of this form involves calculation of the
symmetric indefinite factorization

PTKP =LBILT

where P is a permutation matrix, L is unit lower-triangular, and B is block-
diagonal, with 1 x 1 or 2 x 2 blocks. For dense problems, P is chosen using
a stability criterion that determines whether to use a 1 x 1 or 2 x 2 pivot;
see Bunch and Kaufman (1977).

In contrast to the positive-definite case, it cannot be guaranteed that all
pivoting orders for a symmetric indefinite matrix are numerically stable.
The analyse phase for the symmetric indefinite factorization thus attempts
to choose a pivot ordering based solely on sparsity that will lead to low fill-in
in L. When the factorization itself is computed with the actual numerical
values, interchanges that alter the predicted pivot sequence may be required
to retain numerical stability.

The augmented system approach involves an increase in dimension com-
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pared to the normal equations, as well as a more complicated factorization.
Nonetheless, solving the augmented system should be more reliable numer-
ically, particularly in avoiding instabilities attributable to dense columns.
Very promising results have been reported by Fourer and Mehrotra (1990).

As a compromise between approaches (i) and (ii), some suggestions have
been made for working with ‘partially reduced’ augmented systems of the
form K in (7.2). The idea is to perform a block pivot in K with the ‘good’
part of D, simultaneously producing a smaller system and retaining numeri-
cal stability. In any such approach, the dense columns of A are placed in the
portion of K that is not factorized; see, for example, Vanderbei (1991) and
Gill et al. (1991). Alternatively, the indefinite system can be solved using
an iterative method with a sparse preconditioner; see Gill et al. (1990).

Although taking advantage of symmetry often leads to savings in storage
and computation, some linear algebra issues are simplified by ignoring sym-
metry. An approach that deserves exploration is the use of unsymmetric
but highly structured systems, such as (5.16).

Much opportunity clearly remains for improvements and refinements in
the linear algebraic aspects of interior LP methods.

7.2. Linear algebra for nonlinear problems

For nondegenerate linear programs, the results of Section 3.6 show that the
barrier Hessian is asymptotically nonsingular, since A (the Jacobian matrix
of the active constraints) has rank n. As soon as we consider nonlinear prob-
lems (including quadratic programming), however, in general the Hessian of
the barrier function becomes increasingly ill-conditioned as the solution is
approached along the trajectory Since the exact solution of an ill-conditioned
problem is by definition extremely sensitive to small changes in the data,
interior methods might appear to be fundamentally unsound.

Fortunately, a more optimistic view is justified by several observations.
Inherent ill-conditioning afflicts the barrier Hessian only ‘near’ the solution,
which is precisely where asymptotic properties of the Lagrangian function
and the barrier trajectory apply. In particular, a ‘good’ step toward z* from
a point sufficiently near z* is not poorly determined. The ill-conditioning is
consequently an artifact of the barrier transformation rather than inherent
to the constrained problem. In effect, the ill-conditioning gradually and
implicitly reveals subspace information whose asymptotic nature is known.

If the correct active set is identified, a highly accurate approximation to
the Newton step can be calculated in two orthogonal ‘pieces’ lying in the
range of AT and the null space of A, where the condition of the relevant
equations reflects that of the original problem; see Wright (1976). But since
a definitive property of interior methods is that they do not make an explicit
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identification of the active set, it is arguably inappropriate to make such a
prediction. More recent work on this issue has several flavours.

The Newton equations can be solved using a rank-revealing Cholesky
(or modified Cholesky) factorization with symmetric interchanges (Higham,
1990), where linear algebraic criteria are invoked to define numerical rank-
deficiency. When the condition of the Hessian becomes excessively large,
its Cholesky factors lead to bases for the required range and null spaces
(Wright, 1991).

If the nonlinear constraints are formulated in ‘standard form’, namely
as ¢(z) = 0, z > 0, the barrier transformation applies only to the simple
bounds. (Inequality constraints can always be converted to standard form
by adding nonnegative slack variables.) The resulting Hessian of the barrier
function asymptotically approaches the Hessian of the Lagrangian plus a
diagonal matrix, some of whose entries are becoming unbounded. In this
form, the ill-conditioning is concentrated entirely in large diagonal elements
of the Hessian, and does not affect the sensitivity of the solution of the
associated KKT system (Ponceleén, 1990).

Finally, in the spirit of seeking nonsymmetric matrices that may avoid
difficulties with symmetric forms, we recall from Section 3.5 that the matrix

 H-S MH;, —AT
AA c )’

which arises in a primal-dual characterization of the barrier trajectory, is
nonsingular at =¥, and does not suffer inevitable ill-conditioning. A nonlin-
ear primal-dual algorithm can thus be developed in which the linear systems
are unsymmetric but well-conditioned; see McCormick (1991).

It is still unknown which, if any, of these strategies will be most successful
in overcoming the difficulties with conditioning that plagued barrier methods
for nonlinear problems in the 1960s and 1970s.

8. Future directions

Many issues remain to be resolved for interior methods, even for linear pro-
gramming. At the most basic level, the problem categories for which simplex
and interior methods are best suited are not well understood. In addition,
the gap between worst-case and average-case performance has not been sat-
isfactorily explained.

One great strength of the simplex method is its efficient ‘warm start’
capability. Many large linear programs do not arise only once, in isolation,
but are modified versions of an underlying model. After each change in the
model, the resulting LP is re-solved. Because the simplex method can make
effective use of a priori information, it is not uncommon for the solution to
be found in a very small number of simplex iterations — many fewer than
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if the problem were solved from scratch. In contrast, the very nature of
interior methods is to move away from the boundary and then approach the
solution along a central path. No effective strategy has yet been devised
for allowing interior methods to exploit ‘strong hints’ about the constraints
active at the solution.

For nonlinear problems, researchers are returning with fresh enthusiasm
to old topics, such as the treatment of ill-conditioning, the choice of merit
function, and termination of the solution of each barrier subproblem. The
work of Nesterov and Nemirovsky (1989) suggests new, previously uncon-
sidered, barrier functions, which may be of practical as well as theoretical
significance.

It seems safe to predict that the field of interior methods will continue to
produce interesting research to suit every taste.

Acknowledgments

The figures in this paper were produced with the MetaPost system of John
Hobby; his patient help with MetaPost and fine points of IATEX is grate-
fully acknowledged. I thank Ken Clarkson, David Gay, Arieh Iserles, Jeff
Lagarias, Mike Powell and Norm Schryer for helpful comments on content
and exposition. Special thanks go to Philip Gill for his detailed reading of
the manuscript and numerous suggestions for improvements.

REFERENCES

M. Arioli, LS. Duff and P.P.M. de Rijk (1989), ‘On the augmented system approach
to sparse least-squares problems’, Numer. Math. 65, 667-684.

M. Avriel (1976), Nonlinear Programming: Analysis and Methods, Prentice-Hall
{Englewood Cliffs, NJ).

D.A. Bayer and J.C. Lagarias (1989), ‘The nonlinear geometry of linear program-
ming, I: Affine and projective scaling trajectories’, Trans. Am. Math. Soc.
314, 499-526.

D.A. Bayer and J.C. Lagarias (1991), ‘Karmarkar’s linear programming algorithm
and Newton’s method’, Math. Program. 50, 291-330.

R. Bixby (1990), ‘Implementing the simplex method: the initial basis’, Report 90-
32, Department of Mathematical Sciences, Rice University, Houston, Texas.

A. Bjérck (1991), ‘Least squares methods’, Institute of Technology, Link6ping Uni-
versity, Linkdping, Sweden.

J.R. Bunch and L.C. Kaufman (1977), ‘Some stable methods for calculating inertia
and solving symmetric linear systems’, Math. Comput. 31, 162-179.

I.C. Choi, C.L. Monma and D.F. Shanno (1990), ‘Further development of a primal-
dual interior point method’, ORSA J. Comput. 2, 304-311.

V. Chvétal (1983), Linear Programming, W. H. Freeman (New York).

D. den Hertog, C. Roos and T. Terlaky (1990), ‘On the classical logarithmic barrier
function method for a class of sooth convex programming problems’, Report



INTERIOR METHODS 405

90-01, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, Delft, Holland.

1.S. Duff, A.M. Erisman and J.K. Reid (1986), Direct Methods for Sparse Matrices,
Oxford University Press (London).

A.V. Fiacco (1979), ‘Barrier methods for nonlinear programming’, in Operations
Research Support Methodology (A.G. Holzman, ed.), Marcel Dekker (New
York), 377-440.

A.V. Fiacco and G.P. McCormick (1968). Nonlinear Programming: Sequential Un-
constrained Minimization Techniques, John Wiley and Sons (New York). Re-
published by SIAM (Philadelphia), 1990.

R. Fletcher (1987), Practical Methods of Optimization (second edition), John Wiley
and Sons (Chichester).

J.J.H. Forrest and J.A. Tomlin (1990), ‘Vector processing in simplex and interior
methods for linear programming’, Annals of Operations Research 22, 71-100.

J.J.H. Forrest and J.A. Tomlin (1991), ‘Implementing the simplex method for the
Optimization Subroutine Library’, Research Report RJ 8174, IBM Almaden
Research Centre, San Jose, California.

R. Fourer and S. Mehrotra (1990), ‘Performance of an augmented system approach
for solving least-squares problems in an interior-point method for linear pro-
gramming’, Report, Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, Illinois.

K.R. Frisch (1955), ‘The logarithmic potential method of convex programming’,
Report, University Institute of Economics, Oslo, Norway.

J.A. George and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall (Englewood Cliffs, NJ).

P.E. Gill, W. Murray, D.B. Ponceleén, and M.A. Saunders (1990), ‘Preconditioners
for indefinite systems arising in optimization’, Report SOL 90-8, Department
of Operations Research, Stanford University, Stanford, California.

P.E. Gill, W. Murray, D.B. Ponceleén, and M.A. Saunders (1991), ‘Solving re-
duced KKT systems in barrier methods for linear and quadratic program-
ming’, Report SOL 91-7, Department of Operations Research, Stanford Uni-
versity, Stanford, California.

P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright (1986), ‘On
projected Newton barrier methods for linear programming and an equivalence
to Karmarkar’s projective method’, Math. Program. 36, 183-209.

P.E. Gill, W. Murray and M.H. Wright (1981), Practical Optimization, Academic
Press (London and New York).

D. Goldfarb and M.J. Todd (1989), ‘Linear programming’, in Optimization (G.L.
Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds), North Holland (Am-
sterdam and New York), 73-170.

C.C. Gonzaga (1992), ‘Path following methods for linear programming’, SIAM
Review 34, to appear.

B. Griinbaum (1967), Convez Polytopes, John Wiley and Sons (London).

N.J. Higham (1990), ‘Analysis of the Cholesky decomposition of a semi-definite
matrix’, in Reliable Numerical Computation (M.G. Cox and S. Hammarling,
eds), Clarendon Press (Oxford), 161-185.



406 M.H. WRIGHT

P. Huard (1967), ‘Resolution of mathematical programming with nonlinear con-
straints by the method of centres’, in Nonlinear Programming (J. Abadie,
ed.), North Holland (Amsterdam and New York), 207-219.

F. Jarre (1991), ‘Interior-point methods for convex programming’, Report SOL
90-16, Department of Operations Research, Stanford University, Stanford,
California.

K. Jittorntrum (1978), Sequential Algorithms in Nonlinear Programming, Ph.D.
thesis, Australian National University.

N.K. Karmarkar (1984), ‘A new polynomial time algorithm for linear programming’,
Combinatorica 4, 373-395.

N.K. Karmarkar (1990), ‘Riemannian geometry underlying interior-point methods
for linear programming’, in Mathematical Developments Arising from Linear
Programming (J.C. Lagarias and M.J. Todd, eds), American Mathematical
Society (Providence, RI), 51-75.

L.G. Khachian {1979), ‘A polynomial algorithm in linear programming’, Doklady
Akademiia Nauk SSSR 244, 1093-1096 (in Russian); English translation in
Sov. Math. Dokl. 20, 191-194.

V. Klee and G.J. Minty (1972), ‘How good is the simplex algorithm?’, in Inegualities
IIT (O. Shisha, ed.), Academic Press (New York), 159-175.

E. Kranich (1991), ‘Interior point methods for mathematical programming: a bibli-
ography’, Report 171, Universitdt Hagen, Hagen, Germany. This bibliography
can be accessed electronically by sending email to ‘netlib@research.att.com’
with message ‘send intbib.tex from bib’ and/or ‘send intbib.bbl from bib’.

D.G. Luenberger (1984), Introduction to Linear and Nonlinear Programming,
Addison-Wesley (Menlo Park, CA).

I. Lustig, R.E. Marsten and D.F. Shanno (1990), ‘On implementing Mehro-
tra’s predictor—corrector interior point method for linear programming’, Re-
port SOR 90-03, Department of Civil Engineering and Operations Research,
Princeton University, Princeton, New Jersey.

A. Marxen (1989), ‘Primal barrier methods for linear programming’, Ph.D. thesis,
Stanford University, Stanford, California.

G.P. McCormick (1991}, ‘The superlinear convergence of a nonlinear primal-dual
algorithm’, Report T-550/91, Department of Operations Research, George
Washington University, Washington, DC.

N. Megiddo (1987), ‘Pathways to the optimal set in linear programming’, in
Progress in Mathematical Programming (N. Megiddo, ed.), Springer-Verlag
(New York), 131-158.

S. Mehrotra (1990), ‘On the implementation of a (primal-dual) interior method’,
Report 90-03, Department of Industrial Engineering and Management Sci-
ences, Northwestern University, Evanston, Illinois.

S. Mehrotra and J. Sun (1990), ‘An interior point algorithm for solving smooth
convex programs based on Newton’s method’, in Mathematical Developments
Arising from Linear Programming (J.C. Lagarias and M.J. Todd, eds), Amer-
ican Mathematical Society (Providence, RI), 265-284.

R.D.C. Monteiro and I. Adler (1989a), ‘Interior path following primal-dual algo-
rithms, Part I: Linear programming’, Math. Program. 44, 27-41.



INTERIOR METHODS 407

R.D.C. Monteiro and 1. Adler (1989b), ‘Interior path following primal-dual algo-
rithms, Part II: Convex quadratic programming’, Math. Program. 44, 43-66.

J.J. Moré and S.J. Wright (1990), private communication.

W. Murray (1971), Analytical expressions for the eigenvalues and eigenvectors of
the Hessian matrices of barrier and penalty functions, J. Optim. Theory Appl.
7, 189-196.

W. Murray and M.H. Wright (1991), ‘Line search procedures for the logarithmic
barrier function’, Manuscript, AT&T Bell Laboratories, Murray Hill, New
Jersey.

Y. Nesterov and A. Nemirovsky (1989), Self-Concordant Functions and Polynomial-
Time Methods in Convez Programming, USSR Academy of Science (Moscow).

J.M. Ortega and W.C. Rheinboldt (1970), Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press (London and New York).

C.R. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimization: Algo-
rithms and Complezity, Prentice-Hall (Englewood Cliffs, NJ).

D.B. Ponceleén (1990), Barrier Methods for Large-scale Quadratic Programming,
Ph.D. thesis, Stanford University, Stanford, California.

M.J.D. Powell (1972), ‘Problems related to unconstrained optimization’, in Nu-
merical Methods for Unconstrained Optimization (W. Murray, ed.), Academic
Press (London and New York), 29-55.

M.J.D. Powell (1990), ‘Karmarkar’s algorithm: a view from nonlinear program-
ming’, IMA Bulletin 26, 165-181.

J. Renegar (1988), ‘A polynomial-time algorithm based on Newton’s method for
linear programming’, Math. Program. 40, 59-94.

R. T. Rockafellar (1970), Convex Analysis, Princeton University Press (Princeton,
NJ).

C. Roos and J.-Ph. Vial (1988), ‘A polynomial method of approximate centres for
linear programming’, Report 88-68, Faculty of Mathematics and Informatics,
Delft University of Technology, Delft, Holland. To appear in Math. Program.

G. Sonnevend (1986), ‘An analytic centre for polyhedrons and new classes of global
algorithms for linear (smooth, convex) programming’, in Lecture Notes in
Control and Information Science, Vol. 84, Springer-Verlag (New York), 866—
876.

R.J. Vanderbei (1991), ‘Symmetric quasi-definite matrices’, Report 91-10, Depart-
ment of Civil Engineering and Operations Research, Princeton University,
Princeton, New Jersey.

M.H. Wright (1976), Numerical Methods for Nonlinearly Constrained Oplimization,
Ph.D. thesis, Stanford University, California.

M.H. Wright (1991), ‘Determining subspace information from the Hessian of a
barrier function’, Manuscript, AT&T Bell Laboratories, Murray Hill, New
Jersey.



